
Sept2002cover.qxd 8/9/02 3:17 PM Page 1

2002 U. S. Government’s Top 5 Quality Software Projects
Nominations have begun for your organization to enter to become a Top 5 winner.

AV-8B’s Experiences Using the TSP to Accelerate SW-CMM Adoption
Here’s how the AV-8B Joint System Support Activity successfully prepared for a
Capability Maturity Model Level 2 appraisal in just 14 months.
by Dr. Bill Hefley, Jeff Schwalb, and Lisa Pracchia

How the TSP Impacts the Top Line
The model in this article shows how the Team Software Process reduced costs to find
and fix defects, and provided savings that positively affect an organization’s balance sheet.
by Robert Musson

All the Right Behavior
The Team Software Process can help teams effectively use earned value techniques to
refine their plan as they create a key environment for on-time project delivery.
by David R. Webb

Managing a Company Using TSP Techniques
This article describes how one company’s management personnel applied techniques
from the Team Software Process to effectively run its organization.
by Dr. Carlos Montes de Oca and Dr. Miguel A. Serrano

SEI CMM Level 5: Lightning Strikes Twice
Outlined here are the three essential factors that enabled two organizations of the
Boeing Corporation to rapidly progress from CMM Level 3 to Level 5 in six to 12 months.
by Gregory P. Fulton

A Web Repository of Lessons Learned from COTS-Based Software Development
Here is a free repository of lessons learned in commercial off-the-shelf software development.
by Dr. Ioana Rus, Dr. Carolyn Seaman, Dr. Mikael Lindvall, Dr. Victor Basili, and Dr. Barry Boehm

TSP: Process Costs and Benefits
This article demonstrates that Team Software Process overhead is readily quantified and justified by published
results and questions whether overhead is in fact necessary.
by Jim McHale

Cover Design by
Janna Kay Jensen.

Photo © Neil
Rabinowitz/

CORBIS.

3
8

21
28
29
31

DeparDepar tmentstments

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering September 2002

4

5

9

12

17

22

25

26

TTeam eam SoftwarSoftwaree PrProcessocess

CrossTalk
Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the proper-
ty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of
their software products, efficiency in producing them, and
their ability to accurately predict the cost and schedule of
their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 28.

Ogden ALC/MASE
7278 Fourth St.
Hill AFB, UT 84056-5205

Best Best PracticesPractices

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum

Online Online ArArticlesticles

30 Using the TSP to Implement
the CMM
by Noopur Davis
From Performance Based
Earned Value to the CMMI
by Paul J. Solomon

From the Publisher

Web Sites

Coming Events

Letter to the Editor

ICSE Conference Report

BackTalk

The Team Software ProcessSM (TSPSM) was developed by the Software Engineering
Institute to help integrated teams plan and track their work while developing and

enhancing software intensive systems. While the general concepts of effective teamwork
are well known, engineering teams do not generally get guidance on how to build cohesive
teams or on how to effectively lead and coach such teams. The TSP builds and guides
“self-directed” teams. These are teams that manage their own work, build quality products,
and consistently meet commitments. As the articles in this issue show, such teams provide

a rewarding working environment and are a sound business investment.
By establishing effective team-working practices, organizations also build mature manage-

ment practices. The TSP provides specific guidance on how to most effectively implement many
of the high-maturity practices specified by the Capability Maturity Model® (CMM®). As this
month’s authors point out, implementing the TSP accelerates an organization’s CMM improve-
ment program.

In the first theme article, AV-8B’s Experience Using the TSP to Accelerate SW-CMM Adoption, Dr.
Bill Hefley, Jeff Schwalb, and Lisa Pracchia describe how using the TSP accelerated their CMM
improvement efforts. The first step to CMM Level 2 is the most difficult and is where teams
often need the most guidance. As this article shows, the guidance provided by the TSP cut the
typical time to reach Level 2 by about 40 percent.

Next in How the TSP Impacts the Top Line, Robert Musson examines the management conse-
quences of using the TSP. He addresses the cost benefit trade-offs management must make in
running a software-intensive business and explains how the TSP impacts these trade-offs. He
shows that organizations can cut development costs by 25 percent and reduce total life-cycle
costs by 60 percent.

Two theme articles discuss the benefits of using the TSP. In All the Right Behavior, David R. Webb
describes how the TSP helps teams determine their status and manage their work. When projects
cannot precisely measure their status, they cannot recognize their schedule problems in time to eco-
nomically resolve them. The earned value tracking provided by the TSP enables development
groups to recognize their problems in time to effectively address them.

The final theme article, Managing a Company Using TSP Techniques by Dr. Carlos Montes de Oca
and Dr. Miguel A. Serrano, describes how they used the TSP to manage a software company. As
they point out, “The TSP is a powerful team process that can be customized to manage the per-
formance of teams beyond the software domain.” While the TSP was originally developed to sup-
port integrated engineering teams, this article indicates the broad applicability of the TSP’s team-
building and team-working methods.

Two supporting articles in this issue deal with the costs and benefits of process improvement.
In SEI CMM Level 5: Lightning Strikes Twice, Gregory P. Fulton describes three management elements
required for rapid and effective process improvement. Even after organizations reach high maturi-
ty levels, process improvement requires management support that is largely independent of the
technology used. Such support should help any group, whether using the TSP or not. Jim McHale
addresses the principal costs of TSP introduction and use in his article TSP: Process Costs and Benefits.

Dr. Ioana Rus, Dr. Carolyn Seaman, Dr. Mikael Lindvall, Dr. Victor Basili, and Dr. Barry Boehm
introduce a new Web-based repository of lessons learned in A Web Repository of Lessons Learned from
COTS-Based Software Development. The new system will allow dialogues between users and experts
that provide concrete support for problems.

This issue wraps up with two online articles. Noopur Davis’ Using the TSP to Implement the CMM
shows how TSP methods map to the CMM framework. Paul J. Solomon’s article, From Performance-
Based Earned Value to the CMMI, explains that earned value management can be a process thread to
enable effective process integration and improvement during transition to the Capability Maturity
Model® IntegrationSM.

Finally, a very important announcement is in this issue: Dr. Nancy Spruill of the Office of the
Under Secretary of Defense announces CrossTalk’s 2002 U.S. Government’s Top 5 Quality
Software Projects competition. If your project qualifies, I urge you to submit a nomination. I served
on last year’s Top 5 review committee and will also be a judge this year. Whether or not your proj-
ect wins a coveted Top 5 slot, you will learn a great deal just from preparing a nomination.

From the Publisher

The TSP Builds Teams and Successful Software

Watts S. Humphrey
Fellow, Software Engineering Institute at Carnegie Mellon University

September 2002 www.stsc.hill.af.mil 3

Policies, News, and Updates

4 CROSSTALK The Journal of Defense Software Engineering September 2002

MEMORANDUM FOR ALL GOVERNMENT SOFTWARE PROJECTS

SUBJECT 2002 U.S. Government’s Top 5 Quality Software Projects

As the Department of Defense Executive Agent for Software Intensive
Systems, I am pleased to announce that CrossTalk, The Journal of Defense Software
Engineering, will be dedicating its July 2003 issue to the 2002 U.S. Government’s Top 5
Quality Software Projects. The aim is to recognize outstanding performance of software
teams and to promote best practices. The CrossTalk staff is accepting nominations for
this honor through 13 December 2002.

To be eligible for this award, projects must have been performed under a
government contract (internal government contracts also eligible) and provided a
software deliverable to the customer during the period of June 2001 through December
2002 (previous Top 5 winning projects are not eligible). The deliverable may be a
completed contract or an incremental deliverable.

The selection of the Top 5 software projects will be based upon the project’s
adherence to quality and to the contracted cost, schedule, and requirements. The specific
nomination criteria, process, and form can be acquired from the CrossTalk Web site
located at <www.stsc.hill.af.mil/CrossTalk>.

The Top 5 winners will be announced in CrossTalk’s May 2003 issue and
will receive awards at the Software Technology Conference (STC) 2003. Recognition of
the Top 5 software projects helps promote best practices that have demonstrated results.

Team Software Process

September 2002 www.stsc.hill.af.mil 5

This article describes an organization’s
experience successfully applying both

the Software Capability Maturity Model®

(SW-CMM®) and Personal Software
ProcessSM/Team Software ProcessSM

(PSPSM/TSPSM). While work at the Software
Engineering Institute (SEI) has shown

how the TSP relates to the SW-CMM [1, 2],
this article describes results from a CMM-
based Appraisal for Internal Process
Improvement (CBA-IPI) in a software
development and maintenance organiza-
tion.

These results show how the use of the

TSP has accelerated the SW-CMM adop-
tion. Feedback from engineers and the
Systems/Software Engineering Process
Group (SSEPG) on these results provide
additional insight, and the current status of
the TSP project is described. Continuous
learning is also addressed as an organiza-
tion applies its TSP experience to the rest
of the organization as well as to improving
the TSP, itself.

The organization in this success story is
the AV-8B Joint System Support Activity
(JSSA), located at China Lake, Calif. This
Naval Air Systems Command (NAVAIR)
team provides software support for the
AV-8B Harrier aircraft for the United
States Marine Corps and its allies, Spain
and Italy. The AV-8B JSSA is a progressive
organization in terms of ongoing process
improvement initiatives. These efforts paid
off when the combined benefits of the
PSP, the TSP, and a robust Earned Value
Management System (EVMS) were aimed
at demonstrating a SW-CMM Level 2
process maturity.

While all of these factors were equally
important, this article focuses on how the
PSP/TSP successfully prepared the AV-8B
JSSA for that Level 2 appraisal in an accel-
erated 14 months. This accelerated pace
supports an earlier report by Boeing that
showed that the PSP/TSP helped them
reduce their time advancing from SW-
CMM Level 3 to Level 4 by 33 percent [3],
and is significantly shorter than the average
time to move to Level 2 reported by the
SEI [4].

Getting the PSP and the TSP
in Place
The AV-8B JSSA’s TSP project team con-
sisted of seven software engineers, three
systems engineers, and one test engineer.
Before the appraisal, the project received
PSP training during the fall of 2000. This

AV-8B’s Experience Using the TSP to Accelerate
SW-CMM Adoption

Jeff Schwalb and Lisa Pracchia
Naval Air Systems Command, China Lake, Calif.

The Personal Software ProcessSM/Team Software ProcessSM (PSPSM/TSPSM) provides a framework for disciplined software
engineers to successfully execute software development projects. This article describes synergies identified in a TSP imple-
mentation that have accelerated organizational software process improvement – resulting in attaining a Capability Maturity
Model® for Software Level 2 over more than 40 percent faster than the average duration reported by the Software
Engineering Institute (SEI).

Dr. Bill Hefley
Carnegie Mellon University

® Capability Maturity Model, CMM, Capability Maturity
Model for Software, and SW-CMM are registered in the
U.S. Patent and Trademark Office.

SM Team Software Process, TSP, Personal Software Process,
and PSP are service marks of Carnegie Mellon University.

Maturity Level 2 Impacts of TSP Realized
Requirements Management Key Process Area (KPA)
• The Team Software ProcessSM (TSPSM) scripts (processes) direct software engineers to review allo-

cated requirements provided by project system engineers before incorporating them into software
activities.

• The TSP launch scripts supported software engineers in using allocated requirements as a basis for
software planning, work products, and activities.

Software Project Planning KPA
• The Personal Software ProcessSM (PSPSM)/TSP PROxy-Based Estimation (PROBE) method was

used to estimate the size of software work products by combining guidance from the TSP scripts,
historical data, and professional judgment.

• Software planning data were recorded in the TSP notebooks for project tracking and future plan-
ning. This included size, time, resource, and quality estimates, both individually and for the project
team.

• The TSP launch processes and checklists made project planning more robust by incorporating the
project’s software development plan, quality assurance plan, configuration management plan, and
the organization’s earned value management system requirements.

• The TSP launch processes required the team to identify and assess programmatic and technical
risks, and to create a risk mitigation plan.

• The TSP processes helped to facilitate more effective communication between the software, sys-
tems, and test integration teams in performing project planning throughout the build process.

Software Project Tracking and Oversight KPA
• The actual size of work products was recorded and tracked against estimates in the PSP/TSP

workbooks.
• Project’s effort, cost and technical activities were tracked in the TSP weekly team meetings through

rollup of individual workbooks.
• The TSP re-launches provided additional periodic reviews of the project.
• The TSP data enabled corrective actions to be taken as necessary, based upon cost, effort, size,

risks, and task assignments.
• The TSP team workbook clearly showed task assignments for all work products and activities.

Software Quality Assurance KPA
• Representatives from the Quality Assurance (QA) group had started to attend some of the week-

ly reviews to increase their understanding of the TSP processes.
• The QA group’s organizational role in weekly management meetings expanded to report on the

TSP project’s use of their newly acquired processes.

Software Configuration Management KPA
• The project’s Configuration Management (CM) plan was prepared in accordance with the TSP and

the organization’s CM and data management processes.
• The TSP scripts provided guidance on CM activities for the software engineers.
• Software work products placed under CM were identified in the CM plan and the TSP scripts, and

the TSP process was used to track changes and problem reports.

Team Software Process

6 CROSSTALK The Journal of Defense Software Engineering September 2002

training consisted of an executive work-
shop (one day), management and support
staff training (two days each), and soft-
ware engineer training (14 days).

A TSP launch was then conducted in
January 2001 where the project was
defined to have five build cycles. As a
result, the launch has been followed by
supporting re-launches in April 2001,
December 2001, February 2002, and most
recently June 2002.

The Appraisal
The CBA-IPI appraisal of the AV-8B
JSSA organization took place in May 2001.
Two AV-8B JSSA software projects were
examined during this appraisal – the TSP
project and a non-TSP project of similar
size. The appraisal focused primarily on

SW-CMM Level 2 and Level 3 goals. To
better understand the impact of the TSP,
a decision was made by the appraisal team
to also listen for Level 4 and Level 5 evi-
dence as it related to TSP. These observa-
tions would help determine which SW-
CMM Key Process Areas (KPAs) were
influenced by the use of the TSP on the
project and to what extent.

The Maturity Level 2 Impacts of TSP
Realized sidebar (see page 5) and Maturity
Level 3 Impacts of TSP Realized sidebar
(above) outline the TSP-related observa-
tions for SW-CMM Level 2 and Level 3
KPAs, as noted during a CBA-IPI apprais-
al of the AV-8B JSSA.

These TSP observations represent a
solid process foundation upon which
other capabilities can be effectively built.

In addition to the Level 2 and Level 3 evi-
dence, the appraisal team also noted a
number of higher-maturity observations
at Maturity Levels 4 and 5. These are
shown in the sidebar, High Maturity
Impacts of TSP Noted During the
Appraisal.

Feedback from the Engineers
The TSP-trained software engineers at the
AV-8B JSSA enthusiastically admit that
TSP improves the way the organization
plans, schedules, and tracks work, and also
provides a strong emphasis on higher
quality software. This statement is even
true of those who initially doubted the
TSP as just another management fad.

These statements summarize their
TSP sentiments:
• The TSP tracks the quality of what we

are producing, not just the time we
produce it in.

• You can look at what you did previ-
ously.

• You really see how good a product is.
• It is easy to track all the information.
• Once the PSP/TSP becomes your

process, it is relatively effortless.
Comments from select TSP project

team members are worth repeating. “It is
the future, I am sold on it,” adds the soft-
ware team lead. The software lead goes on
to explain how TSP benefits both the
organization and the individual. “People
with TSP/PSP training can go from proj-
ect to project. They are much more versa-
tile. When the organization as a whole
does better work, you don’t need a super-
star to pull it along.”

The TSP project’s lead software design
engineer has become one of the organiza-
tion’s strongest advocates of PSP/TSP.
“PSP really sells you on finding defects
early in the process. It really does make a
difference at the end. We thought it wasn’t
going to work. But we all became converts
by producing valuable data all along the
way. We also significantly improved pro-
ductivity. I worried because I have seen
too many people more interested in the
process than in the product. But TSP
keeps you focused entirely on the project
as you finish smaller products at regular
intervals.”

He also talked about the importance of
software design in the PSP/TSP. “You
have got to have good design to get good
code. One advantage of doing design in
TSP is the design review process. These
reviews help you find and fix potentially
costly defects much sooner.”

Another project software lead views
PSP/TSP like this: “The whole idea of
keeping historical data is to make the

Maturity Level 3 Impacts of TSP Realized
Organization Process Definition and Organization Process Focus
Key Process Areas (KPA)
• Software engineering and other related groups received orientation on process improvement activ-

ities and their roles and responsibilities in the Personal Software ProcessSM and Team Software
ProcessSM (PSPSM/TSPSM).

• Needed project processes were identified with the TSP process inventory launch step and process
performance data was beginning to be collected.

• The organization’s approved life cycles had started to incorporate the PSP/TSP.
• A process improvement proposal repository was being created and the project was conducting

post-mortem sessions at the end of each build cycle.

Training Program KPA
• The project’s training plan included the PSP/TSP.
• The TSP launch training provided an orientation to the applicable roles required to both launch

the project and operate on a weekly basis.

Integrated Software Management KPA
• The TSP launch scripts required the team create a process inventory that identify any weak or miss-

ing processes needed to deliver their product.
• The project was managed according to the TSP scripts and used the TSP data (metrics) for soft-

ware planning and estimating.
• Project cost and effort was managed in the organization’s Earned Value Management System

(EVMS) according to the TSP launch/re-launch handbooks. Detailed TSP data from the individ-
ual engineer level clearly fed into the EVMS system and provided insight to better understand
EVMS data.

• Software risks (programmatic and technical) were identified, assessed, and tracked according to
TSP risk scripts.

Software Product Engineering KPA
• The TSP software engineering tasks were clearly understood, integrated, consistently performed,

and measured.
• Project TSP plan workbooks were used by all project personnel to plan and track their work

efforts.
• Tools such as object oriented analysis and object oriented design, the PSP/TSP scripts and check-

lists, and EVMS were integrated into the project’s process.
• Defects were collected by each member of the project team during every phase of development

and then analyzed by the team at post-mortem.
• The TSP performance measures collected were then used to determine status on project phases

and to improve the process for the future project plans.
• The TSP processes helped the software, systems, test integration and project management teams

work more closely together on project planning throughout the software life cycle.

Peer Review KPA
• Peer reviews were planned and documented in each engineer’s TSP project plan workbook.
• Peer reviews were performed in accordance with the TSP scripts and the organization’s peer review

process.
• Engineers, in both individual and peer reviews, used the TSP scripts and the launch workshop

notebook to collect defect data throughout the project.

AV-8B’s Experience Using the TSP to Accelerate SW-CMM Adoption

September 2002 www.stsc.hill.af.mil 7

product cost less ... to make better esti-
mates for future work. A big benefit of
PSP/TSP is that you can document what
changes will cost.”

The leads of both the TSP and non-
TSP projects shared the same viewpoint.
“In the end, what this is really about is
people. No matter what you invest in
terms of training and overhead, what you
are really investing in is people. And the
important thing is that we improve what
we are doing.”

Feedback from the SSEPG
“Including a TSP and non-TSP project in
the same appraisal was very insightful,”
said the lead of the AV-8B JSSA’s SSEPG.
“While both projects had the necessary
process evidence, finding and understand-
ing the TSP project evidence was effort-
less. Three-quarters of the SW-CMM
requirements for Level 2 were automati-
cally satisfied simply by the project follow-
ing TSP.” This SSEPG lead is another TSP
convert at AV-8B, along with her appraisal
teammates.

TSP Project Evolution
The second build cycle delivered a testable
product with some functionality. At their
last re-launch, this seven-person TSP proj-
ect had completed a 41-week development
effort in 45 weeks, or within 10 percent of
their original estimate. The defect density
of the product at system integration test
was 2.1 defects/thousand lines of code.
Perhaps the most significant quality-relat-
ed observations have come from the sys-
tems and test engineers. They are astound-
ed by the robustness of the application
and its 100 percent up time. For them, this
is a first.

After that the project continued with
planning their work and working their
plans with the TSP. After the May 2001
appraisal, the project conducted two addi-
tional re-launches associated with the third
build cycle of their product.

The first of these was in December
2001; it planned the project through to the
following June 2002. Of particular interest
was the fact that during this re-launch
another mini re-launch was planned. This
was because the team felt a mid-course
correction would be needed due to the
fact that new work with no historical basis
for planning was starting up. This meant
that it would be in their best interest to
stop and re-plan. This re-launch was con-
ducted in February 2002 and was very
effective in quickly allowing the team to
apply recently gathered metrics and re-
plan accordingly for the rest of the third
build cycle.

The project is now underway after its
most recent launch, conducted in June
2002, that planned the fourth build cycle.

Filling in the Organizational
Gaps and Overlaps
The TSP and the SW-CMM are comple-
mentary by design. However, since the
TSP concentrates on project issues, it does
not address the broader organizational
aspects of the SW-CMM. Even if all
teams in an organization were using the
TSP, there is still the need for an addition-
al thin layer of organizational support.
That organizational support is more obvi-
ous at SW-CMM Level 3, where projects
are expected to use a common set of doc-
umented and approved management and
engineering processes. In addition to the
gaps, there are also overlaps between the
TSP and the SW-CMM to consider.

Both the gaps and the overlaps have
challenged the AV-8B JSSA. Filling the
biggest gap meant creating a developmen-
tal change control board, which the TSP
assumes is in place organizationally. For
many lower-maturity organizations, creat-
ing this board may be a TSP project effort
that the organization can then adopt as a
standard approach. That was the case at
AV-8B.

The second challenge was an overlap
between the TSP project roles and organi-
zational roles. Both the TSP project and
the organization have duplicate roles that
are responsible for processes, configura-
tion management, and quality assurance.
Negotiating the roles, responsibilities, and
functional touch-points for these dupli-
cate sets of roles takes time, effort, and
patience.

The good news is that the AV-8B JSSA
is a stronger, more effective organization
for filling the gaps and eliminating the
overlaps. NAVAIR’s lead TSP coach will
also be able to further leverage this expe-
rience by sharing AV-8B’s lessons learned
with other NAVAIR TSP projects.

Conclusions
The TSP launches and executes projects

with individuals trained in the PSP. These
teams follow standards contained in a dis-
ciplined, automated process framework. It
is important to understand that the PSP
and TSP frameworks are flexible and
should be evolved based on the team and
organization’s needs. The primary vehicle
for this evolution is the process improve-
ment proposal – a fundamental element of
the TSP.

The AV-B JSSA is on its own unique
evolutionary TSP path. It is plowing new
ground by integrating its TSP tools with
its EVMS, which is one of only two
EVMS systems in NAVAIR currently cer-
tified. It is also reshaping the TSP for
application to its maintenance software
projects. With strong support for the TSP
coming from all levels of the organization
and results that speak for themselves, the
AV-8B JSSA feels their process improve-
ment initiatives will continue on an accel-
erated course.◆

References
1. Davis, N. “Using The TSP to

Implement The CMM.” CrossTalk
Sept. 2002: 30.

2. Davis, N., and J. McHale. Relating the
Team Software Process to the
Capability Maturity Model for
Software (CMU/SEI-2002-TR-008).
Pittsburgh: Software Engineering
Institute, Carnegie Mellon University,
2002.

3. Vu, J.D. “Process Improvement
Journey (From Level 1 to Level 5).”
European Software Engineering
Process Group, 2001.

4. Software Engineering Institute. Pro-
cess Maturity Profile of the Software
Community – 2001 Year End Update.
Pittsburgh: Software Engineering
Institute, Carnegie Mellon University,
2002.

Additional Reading
1. Humphrey, Watts S. Introduction to

the Team Software Process SM. Boston:
Addison-Wesley, 1999.

High Maturity Impacts of TSP Noted During the Appraisal
Maturity Level 4 and 5 Key Process Areas
• The Team Software Process SM (TSPSM) is beginning to provide the organization a foundation for

software quality management activities.
• Quality goals are being established using TSP launch scripts and defects are being tracked using

the Personal Software ProcessSM and the TSP.
• The TSP is helping to establish organizational defect prevention activities.
• The TSP collects and consolidates defect data for current and future use, which supports aware-

ness by this project, and use of defect data by other projects.
• Data to support continuous process improvement are becoming available through TSP by cap-

turing and acting on process improvement proposals. TSP post-mortems are scheduled and held
to identify improvement opportunities.

Team Software Process

8 CROSSTALK The Journal of Defense Software Engineering September 2002

About the Authors

Bill Hefley, Ph.D., is a
senior lecturer at
Carnegie Mellon Uni-
versity. He is a lead
assessor for the Capa-
bility Maturity Model®

(CMM®)-based Appraisal for Internal
Process Improvement, Standard
CMMISM Assessment Method for
Process Improvement, and People
Capability Maturity Model methods.
Hefley is co-author of “People CMM”
and “People CMM-based Assessment
Method.” He was instrumental in
launching the Software Engineering
Institute's Software Process Improve-
ment efforts.

IT Services Qualification Center
Institute for Software Research Int’l
School of Computer Science
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
Phone: (412) 268-4576
E-mail: bill.hefley@cs.cmu.edu

Jeff Schwalb has been
employed by the Naval
Air Systems Command at
China Lake, Calif. since
1984. He spent the first
10 years of his career

developing various embedded real-time
range instrumentation systems. Schwalb
became a Personal Software ProcessSM

instructor in 1995 and has taught the
course more than 10 times. He has also
been involved in the Team Software
ProcessSM launch of five projects.
Schwalb has a degree in computer science
from California State University, Chico.

NAWCWD
Code 4.1 Systems Engineering Dept.
Knox Rd, Bldg. 1494
China Lake, CA 93555-6100
Phone: (760) 939-6226
Fax: (760) 939-0150
E-mail: schwalbj@navair.navy.mil

Lisa Pracchia leads soft-
ware process improve-
ment initiatives at the AV-
8B JSSA. Her software
background consists of
process improvement,

business analysis, project management,
product life cycle management, and prod-
uct marketing in a wide range of indus-
tries (discrete product manufacturing,
international publishing, telecommunica-
tions, and weapons systems develop-
ment/support for both the government
and private industry). Pracchia has a mas-
ter’s degree in management from the
University of Redlands in California.

NAWCWD
41K200D (Pracchia)
Bldg. 20000A, Room 302
1 Administration Circle
China Lake, CA 93555
Phone: (760) 939-2188
DSN: 431-2188
E-mail: pracchialm@navair.navy.mil

Team Software Process:
Software Engineering Institute
www.sei.cmu.edu/tsp
To have a high-performance software organization you must
have high-performance teams, staffed with high-perform-
ance software engineers. The Personal Software ProcessSM

(PSPSM) and the Team Software ProcessSM (TSPSM) provide a
road map for organizations and individuals to follow on the
road to high performance. The TSP provides specific guid-
ance about how PSP-trained engineers can work as effective
team members on a high-performance team. The PSP pro-
vides specific guidance on how individual engineers can
continually improve their performance.

Software Productivity Consortium
www.software.org
The Software Productivity Consortium provides reduced-
to-practice technology for the development of systems and
software, and is a vehicle for members and affiliates to
adopt, implement, and improve their processes, methods,
and technologies for developing software-intensive systems.
Its structure as a consortium fosters a collaboration to lever-
age pooled resources among members, share lessons-learned,
and develop targeted technologies that meet fundamental
and common needs of all members, and are experienced
with a multitude of process and framework models.

Earned Value Basics
www.acq.osd.mil/pm/evbasics.htm
Earned value is a management technique that relates
resource planning to schedules and to technical cost and
schedule requirements. All work is planned, budgeted, and
scheduled in time-phased “planned value” increments con-
stituting a cost and schedule measurement baseline. There
are two major objectives of an earned value system: to
encourage contractors to use effective internal cost and
schedule management control systems, and to permit the
customer to be able to rely on timely data produced by those
systems for determining product-oriented contract status.
The benefits to project management of the earned value
approach come from the disciplined planning conducted
and the availability of metrics, which show real variances
from plan in order to generate necessary corrective actions.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center is an Air Force
organization established to help other U.S. government
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency in
producing them, and their ability to accurately predict the
cost and schedule of their delivery.

WEB SITES

September 2002 www.stsc.hill.af.mil 9

When thinking about productivity
improvements, engineering man-

agement does not usually have precise
data from which to determine the impli-
cations to the profit-and-loss statement of
the organization. Deploying a new tech-
nology such as object oriented design is
often done because everyone else in the
industry is doing it, and the engineers
want to use the latest hot technology. It is
unclear how such process changes will
impact the balance sheet; there is often no
way to actually measure improvements.
As a result, many organizations go year
after year without knowing if meaningful
improvement has occurred. Few organi-
zations know the actual dollar cost of a
thousand lines of code (KLOC); they
think about head-count on a project, or
person-years of effort, and so on. But
when attrition is high and team turnover
is not accurately measured, development
costs become clouded.

This article will present a model of
determining process effectiveness using
the Team Software ProcessSM (TSPSM). The
costs to produce a KLOC using the TSP
will be compared to a more traditional
process focused on testing in quality.
Finally, total lifetime costs of the TSP will
be compared to the test-based process.

Software Development
Cost Model
A simple model of a development
process is used as the basis for compari-
son. The model will have five major phas-
es: requirements (REQ), high-level design
(HLD), implementation (IMPL), test
(TEST), and release (REL). The detailed
phase breakdown is shown in Table 1.
These phases represent the work required
of a software development project and
whether or not a process actually pro-
duces these products. All systems have
requirements; however, not all processes
produce them.

To determine cost, two pieces of
information are needed: how much time
is spent in each phase and the cost of an
engineer’s time. The problem is that most

software organizations do not have this
information available. Therefore, it is nec-
essary to take known aspects of develop-
ment and infer other information in order
to determine how much time is spent in
each activity.

For example, many organizations have
measured the time to find and fix defects
in various test activities, along with the
expected numbers of defects found in
these activities [1, 2]. Then this informa-
tion can be used to determine the time
spent in test. Using such data, Table 2 (see
page 10), on percentage of time spent in
phase, was created.

The numbers for the traditional test-
based process agree with studies that indi-
cate testing can take two-thirds of the
development effort [2, 3]. The TSP model
agrees with data from one TSP organiza-
tion [4]. The TSP costs are roughly 25
percent less than the costs required to
produce one KLOC using the traditional

test-based approach. But this is only the
cost to get the software into a state suffi-
cient for first-customer use. In a tradi-
tional development process, once the
software escapes from system testing, it
undergoes extended periods of field trial
and beta testing.

Defect repair costs typically soar up to
10 times the cost of integration and sys-
tem testing. In fact, as much as half the
cost to produce software is contained in
repairing the software after the system
test phase (termed release in this model, it
includes beta trial, acceptance test, and
customer use). Table 3 (see page 10)
includes the costs associated with the field
test and warranty periods. These numbers
are based on the author’s experience with
several actual TSP development projects
and are consistent with data from other
organizations [4, 5].

How the TSP Impacts the Top Line

Robert Musson
Software Engineering Institute

With the Team Software ProcessSM (TSPSM), developers are reporting significant productivity improvements. But what does
this mean to the profitability of the corporation? How do these productivity improvements affect the balance sheet? This arti-
cle compares the development costs associated with teams in a traditional test-based organization to those costs measured on
TSP teams. It also presents product and quality data from several TSP projects at one industry organization.

Major Phase Detailed Phase
Breakdown

 Planning

 Requirements (REQ) Requirements

 System test plan

 REQ inspection
 High-Level Design
(HLD) High-level design

 Integration test plan

 HLD inspection

 Implementation (IMPL) Detailed design (DLD)

 DLD review

 Test development

 DLD inspection

 Code

 Code review

 Compile

 Code inspection

 Unit test

 TEST Integration test

 System test

 Release (REL) Field trial

 Acceptance test

 Release

Table 1: Cost Model Phases

“The cost to find and fix
defects once the

software has been
released to the customer
represents a significant

portion of the total
development cost ... By
eliminating most of the

time required to fix
defects in a released

product, an organization
can focus its resources
on new opportunities.”

Team Software Process

10 CROSSTALK The Journal of Defense Software Engineering September 2002

The total lifetime cost for the TSP is
less than 40 percent of the total cost of
the traditional process. The total code
produced by a traditional development
organization is about four KLOC per
engineer per year, assuming 1, 000 useful
hours per engineer year divided by 252
hours per KLOC. This number agrees

with those measured by various studies [5,
7, 8]. A TSP organization will produce
just over 10 KLOC per engineer year,
again assuming 1,000 useful hours divided
by 95.6 hours per KLOC.

In the traditional process, early phase
activities of requirements and architectur-
al design tend to be cut short.

Additionally, inspection activities take
noticeably less time than in the TSP
process for three reasons: They are elimi-
nated under time pressure, engineers do
not use sound data-based review meth-
ods, and work products are often not in a
format that can be reviewed. The tradi-
tional process produces code very quickly,
and then the real work begins in test. In
contrast, the costs for the TSP tend to be
front-loaded in early phases. More
emphasis is placed on personal review
and team inspections. This causes almost
half of the effort to be expended before
any code is even written. Figure 1 shows
this graphically.

Notice that the phase investment of
the TSP is relatively constant over the
development cycle. Traditional processes
have a higher cost in coding, and expo-
nentially growing costs in test. The
crossover point where the investment is
equal in both processes occurs near the
end of integration testing. At this point,
we are indifferent to the two processes
from an investment point of view; costs
are roughly the same. Unfortunately, a tra-
ditional process has only just begun to
pour dollars into the effort at the start of
the system test.

Payback Time
The TSP does not come for free. The
training class requires two weeks of class-
room time and several homework assign-
ments. Most engineers complete training
in 100 (plus or minus 20) hours, or about
three weeks. Additionally, a TSP
coach/Personal Software ProcessSM

instructor is needed for every 50 to 100
engineers. That is the equivalent of
another week per engineer for the whole
organization to support the coach.
Therefore, the incremental cost to deploy
per engineer is about three weeks of fixed
training cost, plus one week of variable
cost per year. A payback graph of this
appears in Figure 2.

In this model, this cost is paid back in
1.6 KLOC. This compares well with the
1,200 lines of code as reported by
Teradyne [4].

Conclusions
The total cost to get software to market
using the TSP is much less than the cost
of using a process focused on testing.
However, this represents only a portion
of the total lifetime cost to develop soft-
ware. The cost to find and fix defects
once the software has been released to the
customer represents a significant portion
of the total development cost. The elimi-
nation of this cost results in the bulk of

Traditional Process Team Software Process

Phase
% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours Phase

% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours

0.99% Planning 0.99% 1.3 4.76% Planning 4.76% 4.4

REQ 4.22% Requirements 2.22% 2.9 REQ 19.87% Requirements 9.93% 9.3

System test plan 0.89% 1.1 System test plan 4.97% 4.6

REQ inspection 1.11% 1.4 REQ inspection 4.97% 4.6

HLD 4.22% High-level design 2.22% 2.9 HLD 18.06% High-level design 9.03% 8.4
Integration test
plan

0.89% 1.1 Integration test
plan

4.52% 4.2

HLD inspection 1.11% 1.4 HLD inspection 4.52% 4.2

IMPL 24.63% Detailed design 2.22% 2.9 IMPL 41.25% Detailed design 8.21% 7.7

DLD review 0.00% 0.0 DLD review 4.12% 3.8

Test development 0.00% 0.0 Test development 4.11% 3.8

DLD inspection 0.00% 0.0 DLD inspection 3.27% 3.1

Code 11.65% 15.0 Code 7.43% 6.9

Code review 0.00% 0.0 Code review 3.71% 3.5

Compile 2.22% 2.9 Compile 1.26% 1.2

Code inspection 0.78% 1.0 Code inspection 3.27% 3.1

Unit test 7.77% 10.0 Unit test 5.87% 5.5

TEST 65.94% Integration test 17.15% 22.1 TEST 16.05% Integration test 7.20% 6.7

System test 48.80% 62.8 System test 8.85% 8.3
Sub-
total

100% 100% 128.7 Sub-
total

100% 100% 93.3

Table 2: Cost to Market

Traditional Process Team Software Process

Phase
% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours Phase

% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours

0.51% Planning 0.51% 1.3 4.65% Planning 4.65% 4.4

REQ 2.15% Requirements 1.13% 2.9 REQ 19.40% Requirements 9.70% 9.3

System test plan 0.45% 1.1 System test plan 4.85% 4.6

REQ inspection 0.57% 1.4 REQ inspection 4.85% 4.6

HLD 2.15% High-level design 1.13% 2.9 HLD 17.64% High-level design 8.82% 8.4
Integration test
plan

0.45% 1.1 Integration test
plan

4.41% 4.2

HLD inspection 0.57% 1.4 HLD inspection 4.41% 4.2

IMPL 12.58% Detailed design 1.13% 2.9 IMPL 40.28% Detailed design 8.02% 7.7

DLD review 0.00% 0.0 DLD review 4.03% 3.8

Test development 0.00% 0.0 Test development 4.01% 3.8

DLD inspection 0.00% 0.0 DLD inspection 3.19% 3.1

Code 5.95% 15.0 Code 7.25% 6.9

Code review 0.00% 0.0 Code review 3.63% 3.5

Compile 1.13% 2.9 Compile 1.23% 1.2

Code inspection 0.40% 1.0 Code inspection 3.19% 3.1

Unit test 3.97% 10.0 Unit test 5.73% 5.5

TEST 33.69% Integration test 8.76% 22.1 TEST 15.67% Integration test 7.03% 6.7

System test 24.93% 62.8 System test 8.64% 8.3
Sub-
total 51.09% 51.09% 128.7 Sub-

total 97.64% 97.64% 93.3

REL 48.91% All post TEST 48.91% 123.3 REL 2.36% All post TEST 2.36% 2.3

Total 100% 100% 252.0 Total 100% 100% 95.6

Table 3: Lifetime Software Development Costs

How the TSP Impacts the Top Line

September 2002 www.stsc.hill.af.mil 11

the savings for an organization using the
TSP. By eliminating most of the time
required to fix defects in a released prod-
uct, an organization can focus its
resources on new opportunities. The only
investments required are training and a
willingness to change.◆

References
1. Davani-Chulani, Sunita. Modeling

Software Defect Introduction. Uni-
versity of Southern California. Center
for Software Engineering, 1998.

2. Cole, Oliver E. The Cost of Debugg-
ing. OC-Systems White Paper. Avail-
able at: <www.ocsystems.com>.

3. Colburn, Timothy R., James H. Fetzer,
and Terry L. Rankin, ed. Program
Verification: Fundamental Issues in
Computer Science. Kluwer Academic
Publishers, 1993.

4. Musson, Robert. “The Results of
Using a Team Software Process.”
Presentation at the Software
Engineering Symposium. Software
Engineering Institute, Sept. 1999.
Pittsburgh, PA.

5. Reifer, Donald J. “Let the Numbers
Do the Talking.” CrossTalk Mar.
2002: 4-9.

6. Hatton, Les. “How Do We Satisfy
Customers in the Long Run?”
ESCOM 2001.

7. Caron, Michael. “Cost Justifying a
Test Coverage Analyzer Tool.”
Newsletter of the Boston Software
Process Improvement Network. Nov.
1995.

-$
20,000

-$
10,000

$0

$10,000
$20,000
$30,000
$40,000
$50,000

Plan
nin

g

Req
uir

em
en

ts

Sys
tem

 Tes
t P

lan

REQ In
sp

ec
tio

n

High
-Le

ve
l D

es
ign

Int
eg

rat
ion

 Tes
t P

lan

HLD
 In

sp
ec

tio
n

Deta
ile

d D
es

ign

DLD
 R

ev
iew

Tes
t D

ev
elo

pm
en

t

DLD
 In

sp
ec

tio
n

Code R
evie

w

Cod
e

Cod
e I

ns
pe

cti
on

Com
pile

Unit
 te

st

Int
eg

rat
ion

 te
st

Sys
tem te

st

Pos
t R

ele
as

e

Phase

D
ol

la
rs

 S
pe

nt

TSP

Traditional

Difference

Figure 1: Cost per Phase

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

$80,000

0 1 2 3KLOC

C
o

st

TSP

Traditional

Figure 2: Payback on Training

About the Author

Robert Musson has
more than 25 years of
software experience as a
development engineer
and in various manage-
ment positions. He spent

15 years at Teradyne helping bring to
market a variety of products for the
telecommunications industry. While
there, he helped deploy the Team
Software ProcessSM (TSPSM) to the first
industry site. He was vice president of
business strategy at a small start-up
before becoming a member of the TSP

Initiative at the Software Engineering
Institute. He has a master’s degree in
computer science from Illinois Institute
of Technology and a master’s degree in
business administration from North-
western University's Kellogg School of
Management.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-9130
Fax: (412) 268-5758
E-mail: ram@sei.cmu.edu

12 CROSSTALK The Journal of Defense Software Engineering September 2002

In a world where software projects can
typically expect a 100 percent schedule

slip, projects using the Team Software
ProcessSM (TSPSM) have an unusually high
rate of on-time completion (Figure 1). In
fact, I have been on three TSP teams that
have experienced tremendous success in
meeting or exceeding schedule. One of
several key factors contributing to this
accomplishment is the effective way TSP
teams make use of earned value tech-
niques to iteratively refine their plan as
they work it.

Unlike many teams using traditional
earned value methods, TSP teams under-
stand what their data mean, they trust their
data, and they actually use their data to
guide them in a way that most projects
cannot. They succeed for the following
five reasons:
1. TSP earned value is based upon prop-

erly decomposed tasks.
2. TSP earned value is measured at the

personal level.
3. TSP earned value is based on true task

completion.
4. TSP earned value is defined in terms of

task hours, not dollars.
5. TSP teams review their earned value

data and update their plans each week.
A well-known TSP coach recently

summed this up when he said, “TSP
earned value drives all the right behavior.”
This article will expound upon this simple,
but profound statement, examining how

TSP teams succeed with earned value, and
why this approach does indeed drive all
the right behavior.

Breaking It Down
Earned value is simply a way of measuring
progress. The following is a very simple
(and unrealistic) example: If a project had

10 major tasks and each task was estimat-
ed to take 10 days to complete, the project
would have a 100-day schedule and each
task could be assigned a value equal to 10
percent of the whole (Table 1). As each
task is completed, that value is earned by
the project.

Traditional earned value throws anoth-
er curve at the project and equates each
task to a dollar value. In the 100-day exam-
ple, if the total project costs were estimat-
ed at $1,000, each task would have a value
of – you guessed it – $100. This is called
the Budgeted Cost of Work Scheduled
(BCWS).

Assuming a month has 20 working
days, you can quickly estimate that two
tasks should be completed each month,
and the entire project should take five
months (Figure 2). Once you have that
baseline estimate, you can begin to add
actual data to the chart as each task is com-
pleted, displaying the Budgeted Cost of
Work Performed (BCWP) and the Actual
Cost of Work Performed (ACWP) (Figure
3). (If you are getting confused at the pro-
liferation of acronyms, do not worry that
your IQ level has dropped. This is a com-
mon problem with traditional earned
value. Later, I will show how TSP makes
this easier, or at least reduces the number
of acronyms you will need to know.)

As stated earlier, this example is far too
simple for the real world. Let us look at a
more realistic situation. Figure 4 (see page
14) details the earned value progression of
a fictional project called Project Genesis after
one year of work. This is a software inten-
sive project and has been using classic
earned value since its inception. Project
Genesis is a firm believer in true all-or-noth-
ing earned value and does not put any
value on the earned value chart until a task
is completed. The project was originally
scheduled to take 18 months to complete
at a cost of just over $1 million. A few
earned value calculations would tell you
that the project, as depicted in Figure 4 is
right on schedule and a bit over budget,
which you can tell by looking at the chart.

Now, look at Figure 5 (see page 14).
This is the same project four months later.
By earned value definition, the project is
exactly on schedule and, though somewhat
over budget, is pretty much in line with
what you would expect. Looking at this
chart as a manager or customer, you may
be tempted to say, “Well, they were behind

All the Right Behavior
David R. Webb

Software Division, Hill Air Force Base

Software projects using the Team Software ProcessSM (TSPSM) have an unusually high rate of on-time completion. One of
several key factors contributing to this accomplishment is the effective way TSP teams make use of earned value techniques
to iteratively refine their plan as they work it. Because earned value is reviewed weekly, and because no value is earned either
at the personal or the team levels until a task is fully completed, software engineers are highly motivated to perform good earned
value practices. This article expounds upon this principle and examines how TSP teams succeed with earned value.

125

100

75

50

25

0

-25

-50

-75

D
ev

ia
ti

o
n

Without TSP With TSP

Effort Deviation
125

100

75

50

25

0

-25

-50

-75

D
ev

ia
ti

o
n

Without TSP With TSP

Schedule Deviation

O

O

O

Figure 1: Comparison of Effort and Schedule Deviation with and without the TSP

“Unlike many teams
using traditional earned

value methods,TSP
teams understand what
their data mean, they

trust their data, and they
actually use their data to
guide them in a way that
most projects cannot.”

All the Right Behavior

September 2002 www.stsc.hill.af.mil 13

for a few months, but now they’ve caught
up.”

Right here we have nailed one of the
major problems with the misuse of tradi-
tional earned value, because that statement
is dead wrong. In fact, Project Genesis is
at least three months behind schedule and
is in serious trouble. It will deliver months
late at a very high cost. If you find this
statement confusing, you are not alone.
Many customers have told me they feel
like they are being duped by doubletalk
when they see earned value charts, because
they know by experience that despite
good-looking charts, projects often fail to
meet their schedules. Let us go over a few
reasons why Project Genesis’s good-look-
ing charts are unintentionally hiding the
truth.

(Right now, any earned value gurus
reading this are hopping up and down and
shouting at the page. That is because there
are earned value calculations – such as
Estimate at Completion – that can tell you
whether or not Project Genesis is truly
behind schedule, even if the chart looks
good. Unfortunately, you have to be an
earned value guru to know this; most man-
agers and customers are not gurus.)

One reason that our fictional Project
Genesis has incorrectly determined sched-
ule performance is that the team did not
properly break down its tasks. An impor-
tant rule of earned value is that you must
plan to see progress each time you report. If
you do not, you really cannot tell when you
are getting behind.

Look at Figure 5 again. This project
was in trouble way back in October, but
did not feel it until January because the
slope of the planned earned value line was
zero. The result of this lack of proper
planning is that they had no feedback on
their progress for several months.

If Project Genesis had been using the
TSP, it would have avoided this pitfall
entirely. TSP teams do not (or should not)
allow long stretches of zero slope on their
planned earned value charts. They can
break the tasks down into very small incre-
ments, usually less than one week in dura-
tion, so small that they can be measured
much more frequently than a month at a
time. In the next few paragraphs, I will
explain how this works, and why it is so
beneficial.

Personal Earned Value
One prerequisite a team must meet prior
to beginning the TSP is that all software
developers on the team must be trained in
the Personal Software ProcessSM (PSPSM).
There are numerous articles and books on
the PSP [1], its tenets, and its numerous

benefits. I will only mention here that PSP
trainees learn how to plan and track their
work at a personal level. PSP-trained soft-
ware engineers know how to estimate in
pieces, break their personal work down
into measurable tasks, and gather minute-
by-minute data on their progress (Table 2,
see page 14). For people who have not had
PSP training, this may seem like a ludi-
crous activity at the individual level. Those
who have tried it out, though, have found
it is really only a matter of personal engi-
neering discipline and takes no more time
than software development performed
using the traditional ad hoc approach.

Simple Earned Value
(Traditional)

$0

$200.00

$400.00

$600.00

$800.00

$1,000.00

$1,200.00

January February March April May June

BCWS

Figure 2: Simple Earned Value Example – Estimates

Simple Earned Value
(Traditional)

BCWS

BCWP

ACWP

January February March April May June

$0

$200.00

$400.00

$600.00

$800.00

$1,000.00

$1,200.00

Figure 3: Simple Earned Value Example – Actuals

Estimated
Days

Value Dollar
Value

Task 1 10 10% $100

Task 2 10 10% $100

Task 3 10 10% $100

Task 4 10 10% $100

Task 5 10 10% $100

Task 6 10 10% $100

Task 7 10 10% $100

Task 8 10 10% $100

Task 9 10 10% $100

Task 10 10 10% $100

Totals 100 100% $1,000

Table 1: Simple Earned Value Breakdown

Team Software Process

14 CROSSTALK The Journal of Defense Software Engineering September 2002

One of the many practical applications
of this data-centric discipline is that an
individual’s tasks and estimates, broken

down to a very fine granularity, are readily
available to any team using the TSP. In
addition, because of personal data gather-
ing, TSP teams have real, measurable data
on task completion, an absolutely essential
element of tracking true earned value.

In other words, TSP team members
can break tasks down and gather very
accurate data on each task. This personal
approach is what makes the type of earned
value used by TSP teams possible.

Time Is Money, or Is It?
Another hallmark of TSP earned value is
its lack of coupling between dollars spent
and task completion. The reason for this
ties back to the personal tracking method-
ology. TSP team members track task time
in addition to project time. Task time is
defined as the actual amount of time (in
minutes) spent performing the specific
tasks identified as key to project comple-
tion, minus any interruptions, which can
consist of such mundane things as tele-
phone calls, e-mails, meals, and trips to the

restroom. However, it is important to note
that any time spent on activities not typi-
cally identified on task lists also count as
interrupts. This means meetings, work-
related discussions, equipment setup, and
even travel to other rooms or buildings are
not counted as task time.

In a typical week, TSP engineers may
track fewer than 20 hours of total task
time. Of course, this is very different than
the 40 hours of project time they have
tracked since all of those non-task items
must be done to support any project. As a
result, the actual cost of a project in dol-
lars is far different from the task hours
earned. Rather than being a drawback,
however, this personal tracking approach
filters out unnecessary data and cleans up
the earned value information. TSP team
members know exactly how much time
(not money) they are spending on the
tasks that matter and exactly when those
tasks are completed. This kind of preci-
sion leads to clearly understood earned
value charts without reference to a bud-
geted or actual cost of anything (Figure 6).

Iterative Refinement
Finally, what sets TSP earned value apart
from all other approaches – and frankly
makes it work – is the frequency at which
the data are reviewed1. Each TSP project
begins with a launch (Figure 7). During the
initial launch, tasks are defined at a very
high level and estimated using gross meas-
urements such as historical productivity
(the number of lines of code a team typi-
cally can produce per hour). Using these
high-level estimates, the team produces a
detailed earned value plan.

This is typically the point when most
software teams stop – that is as detailed as
their plan becomes. The TSP team, how-
ever, then determines what the next phase
of the project will be and uses PSP tech-
niques to break that next phase into very
detailed tasks of fewer than 10 task hours
each. Using this level of detail, the team
reviews progress against this earned value
plan weekly. That is right, once a week, not
once a month. To paraphrase TSP devel-
oper Watts S. Humphrey, projects do not
slip a month at a time, they slip a day at a
time, an hour at a time, and even a minute
at a time.

In order to get insight into project
issues at the earliest possible moment,
project data must be reviewed much more
frequently than the traditional one-month
milestone. During each weekly meeting, it
is immediately obvious to TSP teams
which tasks and team members are ahead
of or behind schedule, and which tasks or
team members need assistance. It is

Project Genesis
Earned Value at 12 months

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

Sep
te

m
be

r

Nov
em

be
r

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

BCWS

BCWP

ACWP

Figure 4: Project Genesis Chart, Number One

Project Genesis
Earned Value at 16 months

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

Sep
te

m
be

r

Nov
em

be
r

Ja
nu

ar
y

M
ar

ch
M

ay Ju
ly

BCWS

BCWP

ACWP

Figure 5: Project Genesis Chart, Number Two

Student

Program

Instructor

David Webb

List Sort

Humphrey/Over

PSP2 Project Plan

Time in Phase (min.)
 Planning 86
 Design 86
 Design Review 28
 Code 28
 Code Review 35
 Compile 8
 Test 41
 Postmortem 30
Total 322

Table 2: Portions of a PSP Planning Worksheet

All the Right Behavior

September 2002 www.stsc.hill.af.mil 15

information like this that gives the team
members the insight to make adjustments
to task assignments, renegotiate function-
ality with the customer, or perform re-
planning activities to keep the project on
track.

It is this combination of detailed plan-
ning, meticulous data gathering, and fre-
quent reviews that makes the TSP’s itera-
tive refinement of project commitments
possible. In fact, it is this ability, in combi-
nation with predictable test times due to
the exceptionally high quality of the prod-
ucts they produce, that makes TSP teams
so successful in on-time deliveries [2].

Let us take another look at Project
Genesis, and this time let us assume the
team had launched using the TSP. At first,
the project earned value plan would look
similar to the old plan they made before
using TSP. Then, the team would deter-
mine that the next 10 weeks will constitute
their next phase. This phase will consist of
incorporating elements one through 10 as
listed in Table 3. The team then would
make an earned value plan for that period
(Figure 8, see page 16).

Unfortunately, they still end up with a
two-week period (Figure 8, circled) during
which they cannot accurately determine
their progress. This is due to a single pro-
gram element – Element 2 – that is esti-
mated to require more than the 30 task
hours the project has estimated it will com-
plete each week. Although this occurs early
in the process, it could have a devastating
impact on the outcome of the schedule.
Using PSP techniques, the team members
of Project Genesis break the large task
down into its component elements (Table
4, see page 16).

Using this more refined estimate of
Element 2, the earned value can be recal-
culated, producing the earned value chart
in Figure 9 (see page 16). Notice that with
this refinement, the flat line on the earned
value chart has disappeared. Now the proj-
ect has a detailed earned value plan that
can be reviewed each week to determine if
the project is actually meeting schedule.

All the Right Behavior
When the TaskView project first launched
into the TSP at Hill Air Force Base in 1998
[3], the team did not have a lot of experi-
ence with this earned value methodology.
Prior to the launch, the team had defined
what they thought was a very thorough
plan with more than 30 separate tasks. To
do the launch and get the earned value
chart using the TSP method, they doubled
the number of tasks, which they felt was
very thorough indeed. This did, however,
leave three or four flat-line areas on their

earned value chart similar to the one in
Figure 8.

I was serving as project leader at the
time and a few weeks after our launch the
engineers came to me with a complaint:
“Our tasks aren’t broken down enough to
earn value every week!” So, with the insis-
tence of the engineers, we used PSP phases
(as shown in Table 2) to further refine the
plan until our tasks were small enough (10
task hours or fewer) to show earned value
each week. This activity increased the num-
ber of tasks to 204, and the engineers were
happy about it. Those are the kinds of
engineers TSP teams produce!

The launch coach was correct when he
said that TSP earned value “drives all the
right behavior.” Because it is reviewed each

Phase Tape 1 Start Weeks 13 9.63
Project TaskView Date 2/23/1998 Completed 13 0.00

Planned
Tasks

Planned
Weeks

Planned
Hours

Actual
Hours

Earned
Value

Planned
Hours/Week

Actual
Hours/Week

Projected
Week

69 14 926.00 571.53 125.20 66.14 43.96 27

ToDate Earned value per week

EV per week to meet schedule

Team Earned Value

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Weeks

E
ar

n
ed

 V
al

u
e

Cumulative
Project Value

Cumulative
Earned Value

Figure 6: An Actual TSP Earned Value Chart from the TaskView Project

Post-mortem

Initial Phase
(e.g., Requirements, Build 1)

Second Phase
(e.g., Design, Build 2)

Third Phase
(e.g., Code, Build 3)

Final Phase
(e.g., Acceptance Test)

Launch

Re-launch

Re-launch

Re-launch

Figure 7: The TSP Launch Process

Task Estimated
Hours

Element 1 28

Element 2 85

Element 3 12

Element 4 26

Element 5 22

Element 6 5

Element 7 26

Element 8 29

Element 9 19

Element 10 23

Table 3: Project Genesis Tasks for the “Next
Phase”

“My experiences
show that traditional
earned value, while
an effective tool,

is rarely used
correctly to predict
and manage project
performance and,
as such, is usually

incomplete.”

week, and because no value is earned
either at the personal or the team levels
until a task is fully completed, software
engineers are highly motivated to perform
these good earned value practices:
• Follow a strictly defined process with

very specific entry and exit criteria as
well as well-defined tasks.

• Break large tasks into small pieces that
can more easily be estimated and
tracked and shows regular progress.

• Project forward to see if their progress
will meet the current schedule.

• Re-plan when unplanned events arise.
• Do the right work, in the right order, at

the right time.
My experiences show that traditional

earned value, while an effective tool, is
rarely used correctly to predict and man-
age project performance and, as such, is
usually incomplete. In fact, many cus-
tomers not only feel overwhelmed with
acronyms like BCWS, BCWP, and ACWP,
they do not trust charts that have all of
those data and more splattered across
them because so often they have seen
results contrary to those charts. The TSP
earned value techniques work because
they collect data at the right level, they are
simple, and they are measured each week.

TSP earned value works. It does
indeed drive all the right behavior.◆

References
1. Humphrey, Watts S. “Making Software

Manageable.” CrossTalk Dec.
1996.

2. McAndrews, Donald R. The Team
Software Process (TSP): An Overview
and Preliminary Results of Using
Disciplined Practices. Pittsburgh:
Software Engineering Institute, Nov.
2000. 30.

3. Webb, David R., and Watts S.
Humphrey. “Using the TSP on the
TaskView Project.” CrossTalk Feb.
1999: 3-10.

Note
1. Since schedules are living documents

and must be renegotiated with the cus-
tomer during development as new sit-
uations arise, this statement does not
imply TSP teams always meet the orig-
inal schedule set forth at project incep-
tion. I was involved with three TSP
projects that met or exceeded the
negotiated schedule. In one case, the
customer shortened the original sched-
ule; in another, the due date was
extended; in the third, the acceptance
test group was not ready to receive the
product so more functionality was
added during the down time. However,
the ability to accurately renegotiate
schedules on the fly and early in the
process, to a customer’s satisfaction, is
one of the great strengths of TSP
earned value and its iterative approach.

About the Author

David R. Webb is a
project management and
process improvement
specialist for the Soft-
ware Division of Hill Air
Force Base in Utah, a

Capability Maturity Model® for Software
Level 5 software organization. He has 14
years of technical, program manage-
ment, and process improvement experi-
ence with software in the Air Force.
Webb is a Software Engineering
Institute-certified instructor of the
Personal Software ProcessSM and a certi-
fied Team Software ProcessSM launch
coach. Webb has a bachelor's degree in
electrical and computer engineering from
Brigham Young University in Provo,
Utah.

7278 4th Street
Software Division, Bldg. 100
Hill AFB, UT 84056
Phone: (801) 777-9737
Fax: (801) 775-3023
E-mail: david.webb@hill.af.mil

Team Software Process

16 CROSSTALK The Journal of Defense Software Engineering September 2002

Project Genesis
First Cut "Next Phase" Estimate

0

10

20

30

40

50

60

70

80

90

100

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Planned Value

Figure 8: Project Genesis Using TSP

Project Genesis
Final Cut "Next Phase" Estimate

0

10

20

30

40

50

60

70

80

90

100

Week
1

Week
2

Week
4

Week
5

Week
7

Week
8

Week
9

Week
10

Planned Value

Week
6

Week
3

Figure 9: Project Genesis “Final Cut”

Task Estimated Hours
Element 2 85

 Planning 10

 Design 33

 Design Review 17.5

 Code 12

 Code Review 6

 Compile 0.5

 Test 4

 Post-mortem 2
Table 4: Breakdown of Element 2

September 2002 www.stsc.hill.af.mil 17

The Team Software ProcessSM (TSPSM) is
designed to facilitate superior per-

formance of software development teams.
Although the TSP is designed for the soft-
ware domain, it is so well defined that it
can be used in other domains. For example,
the management team of QuarkSoft, a
start-up software company, decided to
apply TSP techniques to run the company.
In particular, they have been using TSP
techniques as the baseline process for plan-
ning, controlling, and performing the activ-
ities of all the members of the manage-
ment team.

QuarkSoft’s management team mem-
bers have been using the TSP approach for
more than 10 months and are very pleased
and excited with the results. They are con-
vinced that the TSP has been fundamental
for having effective company management.
For example, the strategy and objectives
for the company are well defined, risk
management has been implemented, com-
munication problems have been reduced,
realistic plans have been built, and impor-
tant problems are addressed in a timely
manner. Their experience shows that the
TSP is a powerful team process that can be
customized to improve the performance of
teams beyond the software domain.

This article explains the motivation for
using the TSP as an executive management
process, how the TSP has been adjusted to
fit the QuarkSoft management team’s
needs, and the lessons learned from this
experience. The authors assume the reader
knows the main concepts and products of
the TSP. Please refer to [1, 2] for a descrip-
tion of the TSP.

Background
QuarkSoft is a small start-up company
whose core business is outsourcing of
software development. Since QuarkSoft’s
differentiator is quality software develop-
ment, the company decided to base its
operations on the Capability Maturity
Model® for Software (SW-CMM®)[3] and
chose the Personal Software ProcessSM

(PSPSM) [4] and the TSP as the means for
implementing the Capability Maturity
Model®.

QuarkSoft’s staff is organized into a
management team that runs the company,
a group of software engineers that devel-
op the software, and a small administra-
tive staff that attends to administrative
and operational issues.

The management team (MT) is com-
posed of the chief executive officer
(CEO), the chief operations officer
(COO), the chief financial officer (CFO),
the research and development officer, and
the software engineering process group
(SEPG) chief engineer. The MT is
responsible for all business and operation
decisions. Major decisions are made by
the consensus of the MT members.

Since the company is relatively small,
each MT member has additional duties as
compared to traditional companies.
Besides overseeing all the operations of
the company, the CEO is responsible for
marketing, contacting new clients, and
closing contracts. In addition to assuring
that all projects are on-time, the COO
participates in quoting projects, does TSP
coaching to internal software develop-
ment teams, trains new hires in PSP, and

ensures that all the engineers are follow-
ing the TSP. The COO is a Software
Engineering Institute-authorized PSP
instructor and TSP launch coach. In addi-
tion to handling financial issues, the CFO
oversees legal, human resources, and daily
administrative issues. Finally, in addition
to being in charge of processes, the
SEPG chief engineer coordinates quality
assurance and configuration management
activities, helps train new hires, and makes
sure that data are collected.

The Need for TSP
When QuarkSoft was created, the MT
used typical management practices. A
business plan and a strategic plan were
elaborated. The mission, vision, strategic
projects, and indicators were defined.
These practices worked fine for setting up
the company. However, after a couple of
months, the business plan no longer rep-
resented reality. On the day-to-day activi-
ties, the MT started to operate in fire-
fighting mode. They would solve the main
problem of the day with no planning at
all. The MT realized that without day-to-
day planning it was easy to be caught by
the urgent problems of the day. This
problem-driven management style did not
leave time to work on fundamental prob-
lems. A new management strategy was
necessary.

Start-up companies need to respond
rapidly to changes in the business envi-
ronment to be able to survive [5, 6]. Many
outside factors such as market changes,
competitors, financial valleys, cancelled
contracts, and delayed payments demand
prompt attention. Very often, the strategy,
planning, and objectives have to change
according to these external factors. The
business environment demands certain
skills from MTs such as good communi-
cation, good planning, constant feedback,
adaptation to changes, and prompt and
accurate information to make decisions.

The TSP’s main concepts and tech-
niques provide the foundation to assem-
ble and guide a team with such skills. The
decision to use the TSP as the base
process for organizing and running the

Managing a Company Using TSP Techniques

Dr. Carlos Montes de Oca and Dr. Miguel A. Serrano
CIMAT Research Center

This article describes the experience of using techniques from the Team Software ProcessSM (TSPSM) to manage a small soft-
ware consulting company. The company’s management team used TSP techniques to run the organization. The authors
describe how the TSP has been adjusted and the lessons learned from this experience.

“Although the TSP
is designed for the
software domain,

it is so well defined
that it can be used
in other domains.
For example, the

management team
of a start-up software
company decided to
apply TSP techniques
to run the company.”

Team Software Process

18 CROSSTALK The Journal of Defense Software Engineering September 2002

MT was somewhat natural and aligned
with the company culture for two reasons.
First, the company has experience using
TSP (i.e., TSP is used in all software
development projects). Second, most of
the MT members (except the CFO) are
TSP and PSP trained. Thus, running and
managing the company was seen as a proj-
ect, and the MT as the team to perform it.
Making this decision was not difficult; the
real challenge was adjusting the TSP to
the needs of the MT and to start using it.

Implementation
The first task was to define the general
process. The MT agreed on dividing the
project into one-month cycles that corre-
sponded to calendar months. Each cycle
would start with a re-launch and would
end with a post-mortem. The re-launch
would take two to four days. During the
cycle, the MT would have one-hour week-
ly status meetings.

The MT has used this TSP approach
since July 2001 (cycle one), including six
cycles in 2001 (i.e., July to December) and
five cycles in 2002 (i.e., January to May).

Adapting the TSP for the MT needs
has been a gradual process. During the
first two re-launches, the MT focused on
making detailed plans for each MT mem-
ber. Few objectives were set, and no risk
analysis was performed.

In cycle three (September 2001), the
MT started writing the minutes from
weekly meetings, did some data analysis,
and started holding post-mortem meet-
ings. In addition, a general meeting was
added at the end of the re-launch agenda.
All QuarkSoft employees attend this
meeting in which the MT presents the
current status of the company, the short
and long-term plans, and the status of
issues and problems of general interest.

By cycle six, the re-launch process had
been tailored to meet most of the MT
needs. Risk analysis was recognized as an
important part of the re-launch, and sev-
eral forms and standards to report and
analyze data had been developed.

Adjusting the TSP
for Management
The MT uses the following definitions to
facilitate communication, planning, and
data collection: Overhead is the time spent
in unplanned activities. Available time is the
time a MT member is supposed to be in
the company (e.g., 40 hours per week).
Available task time is the time that each MT
member has for planning purposes. As
the TSP advocates, the available time is
not the same as available task time. Part of

the available time is used for answering e-
mail and telephone calls, coffee breaks,
interruptions, etc.; this time is called dead
time. Task time is the time spent on
planned activities. Direct total time is the
sum of overhead and task time.

Launch and Re-Launches
A regular TSP project starts with a launch
for the initial cycle and continues with re-
launches for each subsequent cycle. As
mentioned before, the MT decided to per-
form only re-launches. However, in
January 2002, the MT began the practice
of performing a launch for a yearlong
period followed by re-launches for each
calendar month. During the launch, the
MT revisits the company mission, vision,
and general strategy, and defines the
objectives, strategy, and milestones for the
year. Re-launches are for detailed planning
for every month.

A typical re-launch lasts three days. It
follows the general structure of a TSP
launch, i.e. nine sequential meetings.
However, the MT re-launch includes only

the equivalent of the TSP meeting num-
bers two (objectives), three (strategy),
four (general plan), six (detailed plan), and
seven (risk analysis). In addition, other
meetings have been added as illustrated in
the following bullet points. A typical
agenda for a re-launch consists of the fol-
lowing meetings:
• Review personal issues.
• Review financial information/reports

and forecasts.
• List important issues that have not

been addressed or that came up in the
previous cycle.

• Define objectives and priorities (both
for the company and for the MT).

• Define the strategy, perform a risk
analysis, and determine milestones

and important dates for the cycle.
• Identify the activities for the cycle,

activities for future cycles, and respon-
sibility for each activity.

• Resolve dependencies.
• Define the date and time for weekly

meetings and next re-launch.
• Detailed planning (individually).
• Prepare the presentation for the gen-

eral meeting.
• Hold the general meeting.

During the review of personal issues,
each member of the MT describes per-
sonal issues that might be or will be
affecting his/her performance such as
feeling burnout, a wedding, a vacation, or
a new baby.

Risk analysis is fundamental because
there are many risks that could lead to
bankruptcy or company dissolution. The
risk analysis process follows the TSP
approach. Risks are sorted according to
likelihood and impact. Top risks are con-
sidered and activities to mitigate them are
defined. Each risk has a responsible per-
son who tracks the status of the risk.
Contrary to a regular TSP re-launch, the
MT decided to perform risk analysis
before detailed planning because the risk
analysis might produce a change in the
strategy of the cycle.

Running the Plan
After the re-launch, every MT member
has a list of the tasks that he or she will
perform during the cycle. Each MT mem-
ber records the time that he/she has spent
in each of the planned tasks. When a
planned task is finished, the MT member
that performed the task gets earned value
for it. If the MT member performs an
unplanned task, he/she records it as over-
head.

Several administrative tasks have been
detected. Examples include consolidate
MT data; make agendas for weekly, post-
mortem, and re-launch meetings; back-up
documentation; and keep the project
notebook (i.e., a binder with hard copies
of all the documents produced) up to
date. These tasks have been distributed
among members of the MT.

Weekly Status Meetings
and Post-Mortem
Weekly meetings follow an agenda.
Typical roles for the weekly meetings
include the discussion leader for each
agenda item, the timekeeper, and the
recorder. Minutes are written during the
meeting and e-mailed to the MT after the
meeting is finished.

The MT modified the TSP weekly sta-
tus meeting agenda. The major topics of

“During the launch, the
MT revisits the company

mission, vision, and
general strategy, and
defines the objectives,

strategy, and milestones
for the year. Re-launches
are for detailed planning

for every month.”

Managing a Company Using TSP Techniques

September 2002 www.stsc.hill.af.mil 19

the agenda are as follows: personal issues,
report of each of the MT members (i.e.,
each MT member summarizes the status
of his/her area), follow-up of objectives
and risks, status of the individual and
team plan (e.g., overhead, earned value),
next-week plan, summary, and meeting
wrap-up.

The post-mortem of this cycle is done
just before the re-launch of the next cycle
and takes a couple of hours. During post-
mortem, the analysis is focused on esti-
mation errors, overhead and direct total
hours per week, and problems with col-
lecting and interpreting data. Process
improvement proposals and new process-
es needed are addressed, too.

Byproducts
The MT has produced several products
such as a process for preparing post-
mortem data, forms to summarize data
from the cycle (e.g., overhead, task time,
uncompleted tasks), calculation of indica-
tors (e.g., estimation errors, overhead vs.
task time), standards for collecting data,
agendas and minutes, and a checklist to
submit data for consolidation.

It has been necessary to define some
policies. These include rules for setting
deadlines to submit weekly and post-
mortem data, rules to determine the time
an agenda has to be distributed before the
meeting, and rules for canceling or delay-
ing a meeting.

Lessons Learned
The Process
TSP team member roles (e.g., design man-
ager, customer interface manager, etc.) do
not apply to the MT context. The MT
tried to define new team roles but it was
not worthwhile. The MT realized that
managing the company is their project.
Consequently, the roles correspond to the
job positions (i.e., the CEO, the COO,
etc.). Thus, there was no need to redefine
them. Nevertheless, there are several
administrative activities necessary to man-
age the team. As mentioned before, these
activities were assigned to MT members.

Work balance is not done as it is typi-
cally done in the TSP because the MT
members have very specific activities.
There are few tasks that can be performed
by more than one team member.
Nevertheless, the MT does some redistri-
bution of tasks in situations when one
MT member is overloaded and the activi-
ties that he/she has to do are of high pri-
ority.

Weekly meetings have been exception-
ally helpful to improve MT communica-
tion. As the company grows, it is difficult

for every MT member to be aware of the
current status of each area of the compa-
ny. During weekly meetings, each MT
member presents a summary of major
decisions, initiatives, problems, etc., in
his/her area. This practice has increased
the levels of awareness about the status of
the company and the issues that each MT
member is dealing with.

One aspect that has not been resolved
completely involves timing and meeting
time commitments. Examples of this
issue include submitting data for consoli-
dation on time, starting meetings on time,
and scheduling three full days in a row for
a re-launch. Due to the nature of the
work that the MT members perform, it is
difficult to force them to meet these types
of time commitments.

Collecting time data has been chal-
lenging. The MT uses the prototype TSP
tool that is provided by the Software
Engineering Institute to collect data. This
prototype is implemented in Microsoft
Excel, which means that the tool is not
very accessible. For example, when MT

members go away from headquarters,
which is very often, it is impossible to
carry the tool to keep an accurate time
log. This mobility problem has been
addressed by writing down the time log
on a piece of paper, or using a simple
time log tool that runs on hand-held com-
puters, or more drastically, estimating the
times. The inconvenience in all these solu-
tions is re-typing the time log into the
TSP tool.

Re-Launches
Re-launches are very effort demanding;
10-hour workdays and pizza dinners are
common. At the end of the three days,
the MT is really tired. It has been pro-
posed that one day be added to the re-
launch. However, getting three consecu-
tive full days from an executive is difficult.

Getting four days is unrealistic. Other
strategies have been tried with different
levels of success such as having a social
activity at the end of day two, stopping
work at 6 p.m. or starting at 10 a.m. on
one of the three days.

During the early cycles, a considerable
amount of time in re-launch was invested
in detailed planning. Now, the MT spends
more time defining the strategy and
attending to urgent issues. For example,
there are situations when the plan for the
cycle depends on getting a contract. Thus,
performing a good strategy and risk
analysis should be the priority.

One important difference between the
MT and a software team is that there are
fewer interdependencies in the activities
of the MT members. Detailed planning
can be done individually because just a
few interdependencies have to be cleared
out.

Many issues and action items are pro-
duced during weekly meetings and re-
launches and are recorded in the minutes.
However, there are so many issues and
action items that this approach is no
longer adequate. There is a need for
improving the process of tracking and
prioritizing issues and action items.

General
Characterization of quality work has been
an unresolved issue. Quality management
is a fundamental component of the TSP
(e.g., the fifth meeting of a TSP launch).
Moreover, one of the QuarkSoft’s driving
ideas is to work with quality. The MT has
searched for a way to include quality man-
agement in the TSP-adapted process. But,
what does quality mean in the MT work
context? Unfortunately, the MT has not
found a satisfactory answer to this ques-
tion.

MT members have had difficulties in
stabilizing their task time estimates.
Specifically, the CEO time estimates have
varied greatly because among other fac-
tors, he performs many different activities
throughout the cycles. This reduces the
chance to collect historical data on the
same activity. Moreover, some of the
CEO’s tasks do not seem to behave con-
sistently. For example, closing a contract
has a wide range of variability.

The CEO has approached this prob-
lem by shifting from fine granularity esti-
mation to coarse granularity estimation in
closing-a-contract estimating. Instead of
estimating the entire time for closing each
contract in full, he uses historical data
from previous contracts to assign a num-
ber of hours to this activity per week.

The COO has adopted a similar

“During the early cycles,
a considerable amount

of time in re-launch was
invested in planning.
Now, the MT spends

more time defining the
strategy and attending to

urgent issues.”

Team Software Process

20 CROSSTALK The Journal of Defense Software Engineering September 2002

approach. He uses historical data to cal-
culate the average time devoted to super-
vising a project, then uses this average to
estimate the weekly amount of time he
would plan for each of the projects he
supervises.

The CFO is the only member of the
MT who has no previous background on
processes. Although she comes from a
managerial background, she has been
very receptive to the concepts of the
TSP and on collecting data. She shows a
commitment to improving her estimates.
She comments that having detailed plans
allows her to better organize her days.

When beginning the second cycle, the
MT agreed that its members needed to
be up to date in their area of expertise
(e.g., the CFO needed to be current in tax
reforms, and the COO needed to be cur-
rent in new technologies). Thus, the MT
started planning time every week for
what was called continuous education
and actualization. However, it did not
work; the workload for daily activities
was too much. As a result, the MT start-
ed using the time scheduled for continu-
ous education for other more important
activities. Continuous education still is a
major concern, so the MT changed
strategies. Nowadays, each MT member
is required to give a seminar every cycle
that is open to all employees. He/she
presents a paper that he/she has read.
This practice has been working fine so
far.

Workload
Detailed planning has been very useful in
detecting important issues such as exces-
sive workload, unimportant tasks, identi-
fication of critical weeks, company mile-
stones, and major company turning
points.

It has been particularly helpful to
have data on workloads and direct total
time of each MT member. This data has
helped put the effort required to run the
company in perspective. For example,
there have been weeks when a team
member has worked more than 50 direct
total hours per week (this figure means
that he/she has spent at least 60 to 70
hours a week doing company-related
activities). It is easier to see when the
company is overshadowing the MT
member’s life. Working more than 50
direct total hours means that the MT
member has had no time for family,
social activities, personal care, etc. This
fact is important because stressed MT
members are less effective. But knowing
how much time the MT must commit to

the company is still a debatable issue.

Overhead
For planning purposes, the MT used an
available time of 40 hours per week; a uti-
lization factor of 75 percent, that is, to
use 30 hours per week for direct planned
tasks (i.e., available task time); and a time
of 10 hours for overhead and dead time.
After a few cycles, it was clear that each
role behaved differently; planning based
on those figures was not resulting in
accurate estimations.

For example, historical data showed
that the CEO invested about 50 percent
of his/her direct total time in overhead.
For the CFO, COO, and SEPG, the fig-
ure was about 30 percent to 40 percent
overhead. These numbers were critical,
because many important planned activi-
ties were not performed. The earned
value of the team was consistently below

70 percent and, in some weeks, below 45
percent.

It was decided that the CEO would
make his plans with a utilization factor of
50 percent, that is, allocating 20 hours per
week for planned activities and the rest
for overhead and dead time. For the rest
of the team, a utilization factor of 65
percent was decided (i.e., 26 hours per
week of available task time). The MT has
been producing more realistic plans since
these changes were implemented. The
team’s weekly earned value has improved,
and the overhead decreased.

One interesting issue derived from
using these utilization factors is free time.
Assume that in a certain week a MT

member finished all his/her planned
tasks and he/she has no overhead. In
other words, he/she has some free time
in that week. The MT decided that each
member should maintain a pool of tasks.
This pool contains tasks that are impor-
tant but have been delayed for future
cycles. Thus, the team member with free
time can check his/her pool of tasks and
begin doing the one with highest priority
according to the cycle’s objectives and
strategy.

Another interesting issue that arose
from overhead analysis is that there are
different types of overhead. In particular,
the CEO and COO started collecting
transportation data and detected that
they invested a lot of travel time visiting
customers to conduct negotiations, proj-
ect supervision, and meetings. They
found that in some weeks they invested
as much as six hours on transportation
(30 percent of the direct task time for the
CEO). From this the question arose,
“Should the MT charge the customer for
this time?” This question is relevant,
especially when the client delays a meet-
ing or cancels it at the last minute.

Conclusions
MT members produce a wealth of infor-
mation that can be used effectively to
make decisions and to improve team per-
formance. The plan can be adjusted
quickly, according to business needs, pri-
orities, and risks. For a start-up company,
short-term objectives might change rap-
idly. The TSP approach to management
has allowed the MT to make rapid adjust-
ments to these changes. In addition, hav-
ing a detailed cycle strategy makes it easi-
er to plan for such things as vacations,
conferences, and business trips, or detect-
ing warnings of employee burnout and
recommending the best time for vaca-
tions for overwhelmed team members.

There has been only one cycle with-
out a re-launch. The re-launch of
February 2002 had to be cancelled. The
result was a management nightmare. MT
members went back to fire-fighting
mode, the total direct time increased, sev-
eral unattended issues caused several
important problems, and one MT mem-
ber declared himself burned out.
Moreover, re-launch for cycle three took
four days. After this experience, the com-
mitment to do re-launches as planned
and to work based on plan has strength-
ened.

Having the entire team make deci-
sions has been a major advantage. Every
MT member knows and decides on the
most convenient time to do important

“Having the entire
team make decisions has
been a major advantage.

Every MT member
knows and decides on
the most convenient
time to do important

things, such as making
major investments and

purchases, hiring
engineers, and scheduling
vacations and training.”

things, such as making major investments
and purchases, hiring engineers, and sched-
uling vacations and training. In addition,
TSP has helped the MT to focus on impor-
tant things and on aligning MT activities to
the strategy and priorities of the cycle.

The MT considers that the time invest-
ed in doing all the administrative TSP
activities is reasonable. The MT is investing
about 14 percent of its time in re-launches
and less than 5 percent in management
activities (e.g., weekly meetings, preparing
post-mortem data, etc.).

So far, this TSP experience has been
successful. The MT is very pleased with
the results. MT members are enthusiastic
about the data they collect and their per-
formance findings. They are continuously
looking for ways to improve their team
process and plan to keep using and
improving the TSP approach to manage-
ment.

This experience in managing a compa-
ny using TSP techniques shows that the
TSP is a very powerful process that can be
tailored for other domains besides soft-
ware development. This experience also
suggests that the ideas behind the TSP can
be used as the foundation for any team-
work.◆

Acknowledgments
We want to thank the QuarkSoft manage-
ment team for sharing with us their expe-
riences and information.

References
1. Humphrey, W. Introduction to the

Team Software Process SM. Addison
Wesley Longman, 2000.

2. Humphrey, W. “The Team Software
ProcessSM.” Technical Report
CMU/SEI-2000-TR-023, 2000: 51.

3. Paulk, M., et al. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Boston: Addison-Wesley, 1994.

4. Humphrey, W. A Discipline for Soft-
ware Engineering. Boston: Addison-
Wesley, 1995.

5. Fayad, M., M. Laitinen, and R. Ward.
“Thinking Objectively: Software
Engineering in the Small.” Commu-
nications of the ACM 43.3 (2000):
115-118.

6. Paulk, M. Using the Software CMM in
Small Organizations. The Eighth
International Conference on Software
Quality. Portland, Oregon. 13-14 Oct.
1998.

September 24-27
Software Test Automation

Fall Conference
Boston, MA

www.sqe.com/testautomation

October 7-10
MILCOM Military

Communications Conference
Anaheim, CA

www.milcom.org/2002/

October 14-16
20th Annual Pacific Northwest
Software Quality Conference

Portland, OR
www.pnsqc.org

November 3-6
3rd Annual Amplifying Your Effectiveness

(AYE) Conference 2002
Phoenix, AZ

www.ayeconference.com

November 4-8
Software Testing Analysis
and Review Conference

Anaheim, CA
www.sqe.com/starwest

November 11-14
National Defense Industrial Association

Denver, CO
www.ndia.org

November 18-21
International Conference on

Software Process Improvement
Washington, DC

www.software-process-institute.com

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

Managing a Company Using TSP Techniques

September 2002 www.stsc.hill.af.mil 21

About the Authors

Carlos Montes de
Oca, Ph.D., is a
research professor in
the Department of
Computer Science at
the Center for Mathe-

matical Research (CIMAT). He is a
Software Engineering Institute-author-
ized Personal Software ProcessSM

(PSPSM) instructor and Team Software
ProcessSM (TSPSM) launch coach. He has
more than 10 years experience in soft-
ware development and management.
Dr. Montes de Oca is involved in sever-
al TSP and PSP projects in both acade-
mia and industry. His current research
interests include software process
improvement and software quality.
Montes de Oca has a doctorate degree
in computer science from Louisiana
State University.

Apdo. Postal 402
Guanajuato, Gto., 36000
Mexico
Phone: +52 (473) 732-7155
ext. 49577
E-mail: moca@cimat.mx

Miguel A. Serrano,
Ph.D., is a researcher in
the Department of Com-
puter Science at the
Center for Mathematical
Research (CIMAT). He is

a Software Engineering Institute-author-
ized Personal Software ProcessSM instruc-
tor and Team Software ProcessSM launch
coach. His current research interests
include software process improvement,
statistical process control, and software
quality. Dr. Serrano has master’s degrees
in information systems and decision sci-
ences and in system science, and a doc-
torate degree in computer science from
Louisiana State University.

Apdo. Postal 402
Guanajuato, Gto., 36000
Mexico
Phone: +52 (473) 732-7155
ext. 49544
E-mail: masv@cimat.mx

COMING EVENTS

Best Practices

22 CROSSTALK The Journal of Defense Software Engineering September 2002

In the August 2001 “Process Maturity
Profile of the Software Community

2001 Mid-Year Update” [1], the Software
Engineering Institute (SEI) reported that
the median time to move from Capability
Maturity Model® (CMM®) Level 3 to Level
4 is 33 months, followed by 18 additional
months to reach CMM Level 5.
Obviously, accomplishing the same objec-
tive in six to 12 months is a remarkable
achievement. To do it twice – as two
organizations within The Boeing
Company did – is not only a credit to the
organizations involved, but to the under-
lying principles that were present in both
efforts.

In December 2001, just 12 months
after receiving CMM Level 3, the Boeing
Military Aircraft and Missiles Seattle Site
(AMSS) organization achieved CMM
Level 5. Previously in 1996, the Boeing
Space Transportation Systems (STS)
organization transitioned from CMM
Level 3 to Level 5 in approximately six
months.

It is not a mystery that any successful
improvement effort – regardless of its
timeline – requires sponsorship, practi-
tioners’ involvement, and a focus on the
organization’s business needs. But those
elements by themselves do not necessari-
ly equate to an accelerated timeline, which
begs the question: What additional factors
must be present in an organization in
order to achieve high-maturity in a rela-
tively short amount of time?

Although the Boeing AMSS and STS
achievements1 were separated by approxi-
mately six years and involved different
personnel, they shared the following three
fundamental elements in their approach
to improvement: software engineering
process group (SEPG) composition, a
strong tie to the business case, and proj-
ects that had institutionalized a data-driv-
en approach to management. The follow-
ing sections will describe each of these

common elements and how they con-
tributed to each organization’s success.

SEPG Composition
Sponsorship is a commonly cited reason
for why improvement efforts succeed or
fail. Both AMSS and STS addressed the
issue of sponsorship by carefully crafting
their SEPG. The first common element
was SEPG leadership.

Senior managers (i.e., a manager of
other managers) or executive managers
(i.e., project managers) were appointed to
chair the SEPG and were allowed time to
do so as a part of their job descriptions.
The STS software engineering manager
chaired the STS SEPG with membership
that included all project software man-
agers, key leads, key domain experts, and
process focal points. For the AMSS
SEPG, an executive manager was
appointed chairperson, with membership
that included the chief software engineers
from each project, domain experts, and
process focal points. In both cases, man-
agers accounted for 33 percent to 50 per-
cent of total SEPG membership.

In addition, AMSS had a steering
committee that included program execu-
tives and business unit functional man-
agers. The steering committee’s role was

to establish AMSS objectives, commit
resources, and monitor the progress of
the AMSS SEPG.

Including senior managers and pro-
gram executives in hands-on roles in the
improvement effort was the first key to
securing project participation. SEPG
leadership activities went beyond declara-
tions of intent, writing policy, and attend-
ing weekly meetings. SEPG leaders and
members had a stake in the outcome of
the improvement efforts because it affect-
ed products they had responsibility for
producing.

Additional benefits included the fol-
lowing:
• The individuals who were accountable

for producing the overall system set
the process improvement goals, which
aligned improvement efforts with the
product and business needs, not a
model.

• The individuals who had responsibili-
ty for building the software dictated
what the processes were and how they
should be used. There was a clear rela-
tionship between a process and its
impact on day-to-day work.

• The managers who had authority over
budgets and personnel resources put
plans into action. As a result, improve-
ment efforts were an integral part of
the mainstream software development
activities rather than activities isolated
from the business concerns.
Improvement efforts were closely tied

to the bottom line; the people making the
decisions were accountable for the prod-
ucts being produced by the processes.

Staffing the SEPG in this way estab-
lished the group with responsibility,
authority, and accountability. Oftentimes,
SEPGs are staffed with individuals who
have the responsibility for managing the
improvement effort but have little or no
actual authority to change behavior, no
personnel or budget authority, and no

SEI CMM Level 5: Lightning Strikes Twice
Gregory P. Fulton

Boeing Integrated Defense Systems

In December 2001, the Boeing Military Aircraft and Missiles Seattle Site (AMSS) organization (within the former Boeing
Military Aircraft and Missiles) achieved a Level 5 rating using the Software Engineering Institute’s Capability Maturity
Model® (CMM®). This rating was achieved just 12 months after receiving a Level 3 rating in December 2000. While mak-
ing such a rapid progression from Level 3 to Level 5 is uncommon, it was not unprecedented within Boeing. In 1995-1996,
the Boeing Space Transportation Systems organization (within the former Boeing Space and Communications) achieved a
Level 3 to Level 5 transition in approximately six months. This article describes three essential factors that were common to
both organizations that enabled such a rapid progression from CMM Level 3 to Level 5.

“Including senior
managers and program
executives in hands-on

roles in the improvement
effort was the first

key to securing
project participation.”

SEI CMM Level 5: Lightning Strikes Twice

September 2002 www.stsc.hill.af.mil 23

direct accountability for cost, schedule, or
quality. The key factor that separated the
Boeing AMSS and STS organizations was
the insistence that SEPG leaders and
members have a stake in the outcome that
was directly tied to the bottom line of the
projects within the organization.

Another common practice on both
teams was the commitment to charter the
SEPG based on continuous process
improvement, not to simply achieve a
CMM level. Gary Wigle and George
Yamamura described this and other suc-
cessful practices of the STS SEPG in
their 1997 article, “Practices of an SEI
CMM Level 5 SEPG” [2]. The position of
STS was that chartering an SEPG based
on continuous improvement would align
the business case for improvement with
the activities of process definition,
process change management, technology
insertion, process evaluation, training,
process improvement support, and regu-
lar assessments. A SEPG charter based on
the business needs of the organization,
combined with personnel that have the
authority to make changes, were key to
the success of STS.

AMSS adopted a similar philosophy
early on by selecting the STS charter as its
model. This approach to SEPG composi-
tion and function provided the founda-
tion for understanding the business case
for high maturity practices, and assured
that key stakeholders were involved.

This approach has proven successful
on two separate occasions in two com-
pletely different business units. The fact
that the model proved successful in com-
pletely different domains, with different
personnel involved, and with approxi-
mately six years separating the two efforts
underscores the value of chartering and
staffing an SEPG in this manner.

A Strong Tie to the
Business Case
The second key factor was developing an
understanding of what areas were critical
to producing successful, high-quality
products in order to focus improvement
efforts. In the case of STS, the Inertial
Upper Stage (IUS) project had a business
objective to achieve a 100 percent mission
success rate. Over time, they developed a
clear understanding of the relationship
between key development practices and
mission success. Defect prevention was
strongly emphasized long before the
CMM was ever published because soft-
ware errors during flight could rapidly
lead to mission failure.

For AMSS, the Boeing F-22 project

had established a history of outstanding
product quality, cost, and schedule per-
formance. Maintaining a careful balance
of cost, schedule, and quality perform-
ance while reducing cycle time has
become a primary business objective.
Before either organization made an effort
to achieve Level 5, the underlying busi-
ness goals and criteria for success were
established and communicated to every-
one in the organization. Consequently,
processes and metrics were inherently
aligned to provide the necessary insight
into critical processes and product quality.

As an example, the former Military
Aircraft and Missiles Business Unit used
five balanced measures in the areas of
cost, schedule, quality, cycle time, and
inventory/backlog. Four of these five
were deemed relevant to software and

flowed down to the AMSS organization
(cost, schedule, quality, and cycle time). At
the project level, data supporting these
four areas had already been collected and
used for a number of years. The data were
researched and analyzed to establish his-
torical baseline capabilities for process
and quality. This established a quantifiable
understanding at the project and organi-
zation levels in areas that were already tied
to the business case of the organization
and the business unit. This also provided
a commonality among metrics in use by
all projects of the organization (see
Figure 1).

In both cases, the pursuit of high
maturity practices was rooted in a quan-
tifiable understanding of the impact
improvement efforts would have on the

bottom line. In fact, the application of the
CMM-based approach had little to do
with the CMM itself; rather, it was the act
of putting these practices into place that
eventually improved the project in terms
of cost, schedule, and quality. Most
importantly, that understanding was
shared with senior managers and execu-
tives who were accountable for mission
success.

Project Culture and
Historical Data
The existence of historical data that had
been consistently collected over several
years was the final contributing factor to
achieving Level 5 in such a short time. In
both cases, the organizations valued a
data-driven approach to software man-
agement; both had used a consistent set
of indicators for a number of years. Each
organization had at least one project (IUS
for STS, and Boeing F-22 for AMSS) that,
through the necessity of meeting business
and mission objectives, had long since ini-
tiated a data-driven approach to software
management.

Making the transition from Level 3 to
Level 5 amounted to taking what the
managers understood as intuition, experi-
ence, and instinct and adding the quanti-
tative understanding as revealed through
analysis of the historical data. Managers
on both IUS and Boeing F-22 had been
making mental quantitative interpreta-
tions of the data for a number of years.
Providing a historical context based on
statistical analysis was a logical extension
to the existing mindset of the software
managers. Deployment was further accel-
erated by the fact that a quantitative
understanding of process and quality was
introduced in areas where data had been
collected and analyzed for a number of
years. While the presentation and usage of
the historical data was new, the practice of
collecting, reporting, and acting on the
data had been long-since established.

For both organizations, introducing a
quantitative understanding of the data in
use was treated as an extension of an
existing practice, not a new practice. Once
this technique was understood and the
benefits quantified, the value of applying
this practice to other areas of software
development became obvious. Each
organization prioritized its efforts based

Business
Case

Target
Area

Target
Area

Measurement Historical
Data

Capability
Baseline

Figure 1: Business Case Driven Approach

“... the pursuit of
high maturity practices

was rooted in
a quantifiable

understanding of the
impact improvement
efforts would have on

the bottom line.”

Best Practices

24 CROSSTALK The Journal of Defense Software Engineering September 2002

on the data that directly tied to its core
business needs. This resulted in a quanti-
tative metric set that included eight to 12
metrics distributed across process and
quality.

Both organizations used metrics relat-
ing to cost and schedule that included
earned value, cost and schedule variance,
budget, actuals, and product release per-
formance. STS used several defect-related
measurements that ranged from defect
removal during peer reviews to defect
profiles (quantity and density) for each
software product with clear traceability to
ongoing defect prevention efforts. AMSS
also used defect density measurements
but with an increased emphasis on cycle
time, and used measurements such as
build cycle time to help manage improve-
ments without sacrificing cost or quality.

Using eight to 12 metrics proved to be
both meaningful and manageable. Some
organizations can fall into the trap of try-
ing to produce more Level 4 metrics than
can possibly be used in an effective man-
ner. In addition, new metrics may get
invented that provide interesting informa-
tion, but have no real significance in
understanding the things that are vital to
running the business. Both AMSS and
STS avoided that trap because of SEPG
composition and the tie to the business
case. The individuals who used the met-
rics dictated what areas were meaningful.

Summary
The combination of hands-on participa-

tion by senior managers and executives, a
clear tie to the business case, and the
availability of mature historical data all
contributed to making a rapid and almost
intuitive transition to the high maturity
practices. A common reaction from
achieving Level 5 by both STS and AMSS
was that it validated long-standing busi-
ness practices that had been refined and
elevated as best practices. Instead of hav-
ing to overcome the not-invented-here
syndrome, members of each organization
were proud to say these processes were
invented here.◆

References
1. Software Engineering Measurement

and Analysis Team. Process Maturity
Profile of the Software Community
2001 Mid-Year Update. Pittsburgh:
Software Engineering Institute.
Carnegie Mellon University. Aug.
2001.

2. Wigle, Gary B., and George Yamamura.
“Practices of an SEI CMM Level 5
SEPG.” CrossTalk Nov. 1997.

Note
1. Both Space Transportation Systems

(STS) and Boeing Military Aircraft and
Missiles Seattle Site (AMSS) assess-
ments were conducted using the
CMM-Based Appraisal for Internal
Process Improvement method with
external lead assessors from the
Software Engineering Institute, STS,
and Q-Labs (AMSS).

About the Author

Gregory P. Fulton is
currently the software
process improvement
lead for Boeing’s F-22
program, and Capabil-
ity Maturity Model®

Level 4/5 focal point for the Aircraft
and Missiles Seattle Site organization.
Fulton has 12 years of software devel-
opment and process improvement
experience, including an assignment
as Space Transportation Systems Soft-
ware Engineering Process Group
lead. He is a former Air Force officer
with seven years active duty experi-
ence. Fulton has a bachelor’s of sci-
ence degree in computer science from
the University of Portland and a mas-
ter’s of science degree in computer
science from the University of
Nebraska at Omaha.

Boeing Integrated Defense Systems
F-22 Program
P.O. Box 3707, MC 43-14
Seattle,WA 98124-2207
Phone: (206) 544-1674
Fax: (206) 662-3301
E-mail:gregory.p.fulton@boeing.com

Software Engineering Technology

September 2002 www.stsc.hill.af.mil 25

The development of commercial off-
the-shelf (COTS)-based software is dif-

ferent in many respects from in-house soft-
ware development. Since COTS requires
different activities and skills, we need to
build a body of knowledge about COTS-
based software development. Thus, the
authors have built a Web-based repository
of lessons learned, seeded with about 70
lessons extracted from literature, including
journal articles [1], workshop presentations
[2], and government reports [3, 4]. The
authors also organized online eWorkshops
[5] and are using these discussions to syn-
thesize new lessons and refine existing
ones2. They are also consolidating the
repository with an unpublished set of les-
sons learned from the Software
Engineering Institute.

The lessons are described in the reposi-
tory by a set of attributes, the most impor-
tant describing the context in which the les-
son was learned and could be applied (such
as type of system, type of company, num-
ber and type of COTS). Other attributes
refer to type of data (qualitative or quanti-
tative), recommended audience, or perti-
nent life cycle phase. Most of the attributes
were chosen based on a bottom-up effort
to characterize and differentiate the lessons
learned in the initial repository. Others were
added simply because they seemed to
reflect issues of interest to potential practi-
tioner users (e.g., impact on cost, quality,
and schedule).

Users can interact directly with the main
components of the system, the COTS
Lessons Learned repository and browse or
search and retrieve lessons based on text
searches over all attributes. Users are also
encouraged to contribute to the communi-
ty experience by using the online submis-
sion form provided on the main page, avail-
able at: <http://fc-md.umd.edu/ll/index.
asp>.

User feedback is encouraged. Examples
of useful feedback are: “this lesson applies
differently in my environment because ... ,”
or “I experienced the same situation in a
similar project,” etc.

The feedback and new lessons go first
to a buffer, and are examined and validated
before being uploaded to the repository. An
administrator maintains the repository, and
an analyst is responsible for the repository’s
evolution. A component of the system
(currently under development and available
soon) will allow dialogues between users
and experts, providing concrete support for
problems. The logs of these dialogues will
be captured and used for extracting new les-
sons.

For guidance on the use of the reposi-
tory, there is a set of frequently asked ques-
tions (FAQs) accessible from the main
page.

The repository’s content is growing
organically by contributions from users and
as a result of analysis, synthesis, and refine-
ment of the existing lessons by experts. The
attributes used to characterize and classify
the records will also evolve over time. The
repository has a built-in facility for tracking
various metrics related to the repository’s
usage, which can be used to tune the repos-
itory based on usage patterns.

The repository is available at no cost at:
<http://fc-md.umd.edu/ll/index.asp>.◆

References
1. Basili, Victor, and B. Boehm “COTS-

Based Systems Top 10 List.” IEEE
Software. May 2001: 91-93.

2. Fox, Steve, and M. Moore. “EOSDIS
Core System (ECS) COTS Lessons
Learned.” 25th Annual NASA Goddard
Software Engineering Workshop, Nov.
2000. Available at <http://sel.gsfc.nasa.
gov/website/sew/2000/SEW25_final
_program.htm>.

3. Albert, C., and E. Morris. Commercial
Item Acquisition: Considerations and
Lessons Learned. Available at: <www.
dsp.dla.mil/documents/cotsreport.pdf>.

4. Lewis, Patrick, P. Hyle, M. Parrington, E.
Clark, B. Boehm, C. Abts, R. Manners,
and J. Brackett. “Lessons Learned in
Developing Commercial Off-the-Shelf
(COTS) Intensive Software Systems.”
FAA SERC Report, 2001.

5. Basili, Victor, R. Tesoriero, P. Costa, M.
Lindvall, I. Rus, F. Shull, and M.
Zelkowitz. Building an Experience Base
for Software Engineering: A report on
the first CeBASE eWorkshop.
Proceedings of the 3rd International
Conference on Product Focused
Software Process Improvement. PRO-
FES2001. Kaiserslautern, Germany,
Sept. 2001.

Notes
1. This work is partially sponsored by the

National Science Foundation grant
CCR0086078, <http://cebase.org>, to
the University of Southern California
and the University of Maryland, with
subcontract to the Fraunhofer Center,
Maryland.

2. Many thanks to our CeBASE research
partners from University of Southern
California, Chris Abts and Dan Port, for
their help in gathering the published les-
sons and running the first COTS
eWorkshop.

A Web Repository of Lessons Learned from
COTS-Based Software Development1

Dr. Ioana Rus, Dr. Carolyn Seaman, Dr. Mikael Lindvall, Dr. Victor Basili, and Dr. Barry Boehm
Center for Empirically Based Software Engineering

By their natures, commercial off-the-shelf (COTS) software development and in-house software development are very differ-
ent. Building a body of knowledge of lessons learned in COTS-based development would be very beneficial. Thus the authors
have built a Web-based repository of such lessons learned for free use.

About the Authors

The authors are members of the
Center for Empirically Based Software
Engineering (CeBASE), a National
Science Foundation-funded project.
Dr. Ioana Rus (irus@fc-md.umd.edu)
and Dr. Mikael Lindvall (mikli@fc-
md.umd.edu) are scientists at Fraun-
hofer Center for Empirical Software
Engineering Maryland (FC-MD). Dr.
Victor Basili (basili@fc-md.umd.edu)
is the director of this center and a pro-
fessor at University of Maryland. Dr.
Carolyn Seaman (cseaman@umbc.edu)
has a research position at FC-MD and
is also an assistant professor at Uni-
versity of Maryland, Baltimore County.
Dr. Barry Boehm (boehm@usc.edu) is
a professor at University of Southern
California.

Open Forum

26 CROSSTALK The Journal of Defense Software Engineering September 2002

Aquestion that often arises when
attempting to convince a management

team or an engineering staff to adopt the
Team Software ProcessSM (TSPSM), or any
other process improvement program is:
“How much overhead will it add?”

This is generally not an easy question
to answer since it is unlikely that the ques-
tioner knows how much overhead, beyond
perhaps a general accounting figure, is
associated with an organization’s current
practices, particularly at the project-team
level. Thus, the question of how much
overhead will be added cannot be
answered since it is not known how much
overhead there was in the first place; a
large part of that team-level overhead will
likely be replaced by the TSP. Also, it
seems somewhat ironic that this question
arises from the same mindset that trims
administrative and support staff, allowing
managers and developers to answer their
own phones and make their own copies,
which seems like true overhead indeed.

For the sake of argument and part one
of this article, let us suppose that the ques-
tion is legitimate at face value. Part two of
this article will address a few of the rele-
vant benefits of using the TSP. Finally the
question of process overhead itself will be
examined.

Part One:The TSP Overhead
We need a counting standard to begin the
analysis of the amount of the TSP over-
head. We will assume 52 weeks per year,
five working days in a week, and eight
hours per day for a 40-hour week. That
gives us 260 days or 2,080 hours per ideal
developer-year.

The TSP calls for an all-hands team
planning session (called a launch) that lasts
for four days at the beginning of a project.
Re-launches of up to three days each hap-
pen every three or four months. Let us
assume that a full four-day launch happens
annually, and a full three-day re-launch
every quarter thereafter. This totals 13 days
per developer, exactly 5 percent of the
ideal developer-year.

At the end of every launch phase, the
TSP calls for a post-mortem meeting to

consolidate the data gathered and compare
it against the launch estimates. The post-
mortem also allows the team to figure out
how the processes that they used helped or
hindered in getting the job done, and to
identify process adjustments to be imple-
mented the next time. Post-mortems
should last a day or less. Let us assume a
full day for the entire team once a quarter,
or four days per year. This is slightly more
than 1.5 percent of a developer-year.

Weekly status meetings are also
required. If the TSP team is reasonably
efficient in running its meetings, most

teams of, say, 10 to 12 people, can conduct
them in an hour or less. Smaller teams can
take less time, and larger teams can take a
little longer, but if a meeting is running
more than 90 minutes, either the team
needs some training in meeting facilitation,
or the team is just too big. Weekly meeting
time equals one hour per week on average,
or 2.5 percent of a developer-year.

The amount of time spent gathering
data for the TSP is often questioned, so let
us examine that. An entry in the time log,
if done by hand on paper, takes about 15
seconds, counting start time, stop time,
and interrupts as a single entry on one line.
A person probably makes between 10 and
12 entries per day on average. It is a lot less

tedious if you are using the SEI-supplied
TSP tool or a freeware/shareware pro-
gram, and there are some nice time-track-
ing programs available for your favorite
hand-held device. Some organizations
have developed their own tools for this
purpose. [In case you were wondering, the
Software Engineering Institute (SEI) does
not care which tool you use, as long as you
report specified summaries of the gath-
ered data back to the SEI.]

If you are using anything besides a tool
that allows direct consolidation with the
rest of the team’s data, it should take about
five minutes to transfer your time log
entries daily. (If you wait until the end of
the week, it tends to be tedious and inac-
curate. Do not do that!) Set transfer time at
10 minutes a day, 12 minutes to make the
math easy. Five days times 12 minutes per
day equals one hour per week. That is
another 2.5 percent, but it is that high only
if you do it by hand first and then transfer,
less time otherwise.

Estimating the time spent logging
defects can be tricky. Defects found in per-
sonal reviews or team inspections tend to
take less time to log since, by definition,
these are for things that you are looking
for specifically. Set 30 seconds or less to
log a defect found in reviews/inspections
or by the compiler, which after all is telling
you what the defect is. In integration and
test phases, admittedly it can take a little
longer to log a defect, but since you have
relatively few of these (due to the great job
you did in your reviews and inspections),
the time spent here should not be too
onerous. Even at two minutes per defect,
that is plenty of time. On average, my
informed guess is about one minute to log
a defect. At 10,000 lines of code (LOC)
per programmer-year (a fairly productive
person) and an average of 100 defects per
1,000 LOC (KLOC), that is about 1,000
defects or about 1,000 minutes. To make
the math easier, let us round up to 1,200
minutes or 20 hours per year, or slightly
less than 1 percent overhead attributable to
defect data gathering.

The time spent on the TSP role man-
ager tasks is difficult to estimate, in part

TSP: Process Costs and Benefits
Jim McHale

Software Engineering Institute

The Team Software ProcessSM (TSPSM), like other process improvement paradigms, is often challenged on the grounds that it
adds overhead to already burdened developers. However, the TSP’s overhead is readily quantified and justified by published
results. One might also question the use of the term “overhead” when referring to necessary project tasks.

“If you question the
value of removing
defects early via

inspection, you should
not even consider using

the TSP or any
other improvement
paradigm based on
CMM principles.”

TSP: Process Costs and Benefits

September 2002 www.stsc.hill.af.mil 27

because the actual duties of each role are
very idiosyncratic to a particular team on a
particular project in a particular organiza-
tion. SEI guidance is for one to two hours
per week. Two hours a week seems fairly
high as an average weekly value, but even
at that we are talking about another 5 per-
cent overhead.

This analysis does not accept the
premise that personal reviews or team
inspections should be treated as overhead.
If you question the value of removing
defects early via inspection, you should
not even consider using the TSP or any
other improvement paradigm based on
Capability Maturity Model® (CMM®) prin-
ciples. CMM was developed as an instanti-
ation of total quality management meth-
ods applied specifically to software devel-
opment [1]. The basic tenet is that it is
generally faster and cheaper to find defects
earlier in the process rather than later.
Also, if reviews and inspections are done
properly, most defects should be found at
that time and logged when they are fixed,
and we certainly should not count defect-
logging time twice. Therefore, in the TSP
implementation of CMM principles,
reviews and inspections are an integral
part of the process, and not overhead.

The overhead numbers are summed
up in Table 1. Is 17.5 percent a lot? I can’t
say. I contend that the question is irrele-
vant unless you know what you get in
return.

Part Two:The TSP Upside
The most recently published example that
I can find on the benefits of using the TSP
is from a Honeywell presentation at the
2002 Software Engineering Process
Group conference [2]. Pavlik and Riall
claim a better-than-70-percent software
productivity increase from one release of
an avionics control system to the next,
with a total of 22 percent savings in total
systems and software effort.

While their delivery was on time, even
more significant is that the quality of their
delivered product was 10 times better than
the previous release, while the delivered
functionality was three times what was
originally planned. I would say that a 17.5
percent process overhead for the TSP was
more than worth it to Honeywell.

At the same conference, a presentation
by John Ciurczak of EBS Dealing
Resources claimed a “37.5 percent reduc-
tion in execution stage cycle” [3]. The exe-
cution stage, in this instance, refers to the
time from when the business case for the
project was approved, until the time that
the product was tested and ready to ship.

That reduction was entirely attributable to
fewer defects in the EBS certification test
phase, which is required for the foreign
currency exchange services that EBS pro-
vides. Ciurczak also showed that the devel-
opment activities prior to certification
testing took just about as long with TSP
practices as without. EBS probably cannot
decide if that 17.5 percent was overhead,
or just a normal and acceptable cost of
doing a project.

In 2000, Don McAndrews of SEI
published a summary of early results of
using the TSP and its companion technol-
ogy, the Personal Software ProcessSM [4].
Unfortunately, productivity was not one of
the numbers available for comparison.
However, the before-and-after compar-
isons for cost and schedule deviation,
defect density in test, and system test time
per KLOC are usually cited by me and my
SEI colleagues to ask a different question:
“Can you afford not to implement TSP,
overhead and all?” Certainly, the other
numbers cited above leads one to the same
question.

Part Three:The Upside
of Overhead
Finally, let us look at this accounting fic-
tion called overhead. The battered diction-
ary that lives on my desk defines it this
way: “overhead n.: business expenses not
chargeable to a particular part of the
work” [5].

I like this definition for a couple of
reasons. First, it justifies my earlier tirade
on not counting reviews and inspections
as overhead, since one clearly must be
inspecting a “particular part of the work.”
Second, it arguably removes the defect
logging time from the calculations since
that too can be attributed to particular
parts of the job. The same argument
applies for most of the time logging, since
time usually is logged only against tasks
that are traceable back to a specific part of
what the TSP team is building. But for the
continued sake of the argument, let us not
fiddle with the 17.5 percent number, even
though it may be high by a few percentage
points. Let us talk instead about a subtle

connotation of the word overhead.
In current usage, overhead conveys the

sense that work so charged is somehow
not entirely necessary. Is planning unnec-
essary? What about evaluating the effec-
tiveness of the resulting plan during the
last three months and figuring out how to
do better the next time? What about
knowing on a weekly basis just how effec-
tively that plan is guiding the work, and
how much of the work you have actually
accomplished? What about gathering the
data necessary to make these judgments
about the plan? What about having the
data available to evaluate your own per-
formance objectively, and to deploy the
team’s resources most efficiently? These
are exactly the purposes of the launches,
post-mortems, weekly meetings, and data-
gathering activities of the TSP.

Is it necessary for a project team to
keep track of changing requirements?
What about having common standards for
design representation and coding? What
about maintaining a view towards testing
the system throughout the life cycle?
These are all activities for some of the
TSP role managers.

I have seen organizations create entire
staffs to plan or to evaluate effectiveness,
or to track time and defects, or to perform
many of the other functions questioned
above. While having such overhead posi-
tions may indeed be necessary in a partic-
ular organization, I like the TSP overhead
model, which features the people who are
doing the work also doing that little bit
extra that actually helps them do the work
more effectively and efficiently. TSP over-
head performs necessary project functions
regardless of the size of the organization,
and can also help the people responsible
for planning, evaluating, and tracking do
their own jobs more effectively by freeing
them to deal with the cross-project and
other organizational issues that they are
intended to address.

On balance, I prefer the overhead that
the TSP brings to the table. A project team
managing and measuring its own work
against its own commitments, and getting
results like those previously cited, seems
to have no need to apologize for its prac-
tices or to justify what percentage of the

Launches and re-launches 5.0%
Post-mortems 1.5%
Weekly team meetings 2.5%
Time logging 2.5%
Defect logging 1.0%
Role manager tasks 5.0%
Total 17.5%

Table 1: Total Overhead Amounts

“TSP overhead performs
necessary project

functions regardless
of the size of

the organization ...”

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering September 2002

time they take to execute.◆

Acknowledgements
My thanks to Jim Porter of Tyco
Electronics whose e-mail initially
launched part of the preceding rant. My
teammate on the TSP Initiative team at
the SEI, Marsha Pomeroy-Huff, also pro-
vided the odd prod or two and edited my
composition perhaps a little too gleefully.
Finally, Anita Carleton of the SEI provid-
ed just the right push at just the right time
to get me started, which is always the
hardest part.

References
1. Paulk, Mark, B. Curtis, M. Chrissis, and

C. Weber. The Capability Maturity
Model: Guidelines for Improving the
Software Process. Addison-Wesley,
1995.

2. Pavlik, Rich, and C. Riall. Integrating
PSP SM, TSP SM and Six Sigma at
Honeywell. Software Engineering
Process Group 2002 Conference
Proceedings (CD-ROM). Carnegie
Mellon University, 2002.

3. Ciurczak, John. The Quiet Quality
Revolution at EBS Dealing Resources,
Inc. Software Engineering Process
Group 2002 Conference Proceedings
(CD-ROM). Carnegie Mellon Univer-
sity, 2002.

4. McAndrews, Donald. The Team
Software Process (TSP): An Overview
and Preliminary Results of Using
Disciplined Practices. CMU/SEI-
2000-TR-15. Carnegie Mellon Univer-
sity, 2000.

5. The New Merriam-Webster Pocket
Dictionary. Simon and Schuster, 1971.

About the Author

Jim McHale joined the
Software Engineering
Institute in 1999. He has
more than 20 years of
experience, mainly in
real-time control and

supervisory systems in the transporta-
tion, steel, plastics, machine tool, and
power generation industries. He has
acted as software engineer, systems
engineer, hardware engineer, project
leader, and product manager. Since
1996, McHale has been a Capability
Maturity Model® (CMM®)-Based
Appraisal for Internal Process
Improvement assessment team mem-
ber, Software Engineering Process
Group member, Personal Software
Process instructor, and Team Software
ProcessSM (TSPSM) launch coach.
Currently he is focusing on using the
TSP to accelerate CMM-based improve-
ment, and on adapting the TSP to
enhance the effectiveness of other SEI
initiatives, including commercial off-
the-shelf systems. McHale has a bache-
lor’s degree in electrical engineering
from the University of Pittsburgh.

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Ave.
Pittsburgh, PA 15213-3890
Phone: (412) 269-3948
E-mail: jdm@sei.cmu.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

JAN2002 � TOP 5 PROJECTS

MAR2002 � SOFTWARE BY NUMBERS

APR2002 � RISKY REQUIREMENTS

MAY2002 � FORGING THE FUTURE OF DEF

JUN2002 � SOFTWARE ESTIMATION

AUG2001 � SOFTWARE ACQUISITION

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

LETTER TO THE EDITOR

Dear CrossTalk Editor,

I just wanted to thank the CrossTalk

staff and the authors for the April 2002
edition “Risky Requirements.” I read
every article with diligence. This is a very
important issue that focuses on the most
important piece of the software puzzle,
software requirement.

Yet, in my opinion, it is the most neg-
lected. You may have the best of every-
thing: management, technical staff,
resources, budget, schedule, customers,
and even CMM® Level 5 processes. But,
if you do not have a good set of well-
defined validated requirements that are
understood and agreed to by all stake-
holders, you have absolutely NOTH-
ING.

Did I say nothing? Well, you do have
something. You have a whole lot of
something: re-work, missed schedules,
low quality, failed projects, irate manage-
ment, customer dissatisfaction, canceled
projects and additions to failure statistics.

We all know that there are no silver
bullets for software development. But, if
you have a good set of well-defined, val-
idated requirements that all stakeholders
can drive a stake into in the early stages
of development, then that is the closest
you will come to that silver bullet.
Everything else will fall easily into place
for the remainder of the life cycle. I
know. I have experienced both phenom-
enons.

Al Florence
MITRE Corp.

ICSE Conference Report

September 2002 www.stsc.hill.af.mil 29

Experts Present Views on 21ST Century
Pamela Bowers
CrossTalk

Software engineering research moves the industry forward. Some of this research was presented recently at the International
Conference on Software Engineering (ICSE) in Orlando, Fla. This article reports on keynote talks at the ICSE 2002.

Technology continues to shrink our
world. Today’s customers know every-

thing about products; almost every business
has a Web storefront, said Jim Cassell,
group vice president at Dataquest Research
at the 2002 International Conference on
Software Engineering.

Global competition causes business to
become very customer centered, said
Cassell, including operating and responding
in real time to customer desires. “We have
to have dynamic, interactive, collaborative
interaction in the supply chain to have zero
latency enterprise (ZLE),” he said. While
ZLE technology is in place, the decision-
makers in business have not adopted it, he
noted. “There is no standard of communi-
cation among parties in the supply chain ...”

Ubiquitous computing is the solution,
according to Cassell. “Operators are look-
ing to operate 24 hours a day, seven days a

week. They must be able to accept a wide
variety of computing supplies, including
laptops, phones, palm pilots, etc.,” he said.
“We need to reduce inefficiencies by ‘virtu-
alizing’ resources, setting standard operat-
ing parameters, switching workloads, and
resource management.”

Meanwhile, 21st century systems engi-
neering demands robust use of the systems
approach, said Donna H. Rhodes, director,
Process and Quality at CSG Systems. Given
the challenges of this century, Rhodes said,
systems engineering must be an essential
engineering discipline. As it becomes a
more integral part of product development,
the character of the systems engineering
discipline expands, and the associated
research agenda takes new shape, she said.
While software engineering and systems
engineering share many methods and prac-
tices, each has a different world view.

Bob Balzer, chief technical officer of
Teknowledge Corporation said researchers
should focus more on commercial off-the-
shelf (COTS) and on assisting users vs.
developers. Opportunities include wrappers
to add user functionality and safety, he said.
New tools or add-ons understand what the
user is doing within a COTS tool, and infer
user goals in order to provide usage guid-
ance and scripting assistance, he said.

Balzer cited user-programmable exten-
sions like Safe-Email in which each opened
attachment spawns a new process that is
wrapped for safety, and Editor, which
allows users to make late authorization deci-
sions by transparently redirecting opera-
tions to a virtual system. He also mentioned
integrity-marked documents that build a
history of all changes made to a document.
“There is a lot of opportunity to make use
of the COTS function that is out there.”◆

30 www.stsc.hill.af.mil September 2002

The Capability Maturity Model® for
Software (SW-CMM®) is a descriptive

model of the characteristics of an organ-
ization at a particular level of software
process maturity [1]. The Team Software
ProcessSM (TSPSM) is a prescriptive
process for projects. It contains an adapt-
able set of processes, procedures, guide-
lines, and tools for projects to use in pro-
ducing high-quality software on time and
on budget. It also includes an introduc-
tion strategy for building management
sponsorship, training managers and engi-
neers, and coaching and mentoring TSP

practitioners.
The CMM and the TSP are comple-

mentary by design [2, 3, 4]. After guiding
the development of the CMM, Watts
Humphrey went on to develop the TSP
as a way to apply CMM principles at the
individual and project levels [5]. The
CMM describes what an organization at a
particular maturity level should be doing,
while the TSP prescribes how high matu-
rity practices are implemented at the
project level.

This article explores the relationship
between the TSP and the CMM by

describing how the TSP addresses each
key process area of the CMM, and by
showing the number of CMM key prac-
tices that are addressed by the TSP.
Further details about the relationship
between the CMM and the TSP are avail-
able in a Software Engineering Institute
(SEI) technical report [6].◆

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/crosstalk> along
with back issues of CrossTalk.

Using the TSP to Implement the CMM

Noopur Davis
Software Engineering Institute

Organizations using the Capability Maturity Model® for Software (SW-CMM®) to guide their software process
improvement efforts often struggle with implementation details. The Team Software ProcessSM (TSPSM) was designed to
implement high maturity processes for projects. This article examines the relationship between these two complementary
technologies by analyzing the degree to which the CMM is addressed by the TSP. An overview of the relationship
between the TSP and the CMM is presented first. This is followed by a description of how the TSP addresses each
CMM key process area.

Many organizations are planning to
transition their framework for

process improvement efforts from the
Capability Maturity Model® for Software
(SW-CMM®) to the Capability Maturity
Model® IntegrationSM (CMMI®). The
CMMI is generally consistent with the
guidelines of the primary external indus-
try benchmarks for Earned Value
Management (EVM), including the
Electrical Industries Association stan-
dard EIA-748-A, “Earned Value
Management Systems” [1] (EVM stan-
dard). However, the CMMI is more

stringent than the EVM standard
regarding objective measurement and
more focused on requirements.

Those organizations that already use
EVM can develop efficient process
improvement plans and minimize transi-
tion costs, including appraisal costs if
they utilize the relationships between the
CMMI and external industry bench-
marks, and address the gaps between
their EVM practices and CMMI goals.

Other organizations should consider
implementing EVM as a process
improvement. In the CMMI context,

EVM is a process thread that crosses
many discipline boundaries and is criti-
cal to effective process integration.
Consequently, implementation of EVM
during the transition will be more effi-
cient if it is part of an overall plan to
improve and integrate processes.◆

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/cross talk> along
with back issues of CrossTalk.

From Performance-Based
Earned Value to the CMMI

Paul J. Solomon
Northrop Grumman Corporation

Earned Value Management (EVM) can be a process thread to enable effective process integration and improvement dur-
ing transition to the Capability Maturity Model® IntegrationSM (CMMISM). Organizations that already use EVM can
reduce their transition costs and increase the effectiveness of EVM by following the guidance in this article. Other organ-
izations should consider implementing EVM during transition to the CMMI. Quantitative project management, with
the effective use of performance-based earned value, will reduce the risk of failing to achieve a project’s cost, schedule, and
technical objectives.

Online Articles

BACKTALK

Hello. My name is David Webb, and I
am a PSPSM addict.

PSP is the acronym for Personal
Software ProcessSM, developed by Watts
Humphrey. It is a software engineering dis-
cipline that trains software professionals to
plan, track, and improve themselves like
marathon runners. I am addicted to it. Let
me give you some examples of my addic-
tion.

I plan everything.
Note, everything! I plan
my days, each and every
day, in great detail. I identi-
fy every meeting I’m to
attend, every document
I’m to produce, and all the
activities I’m to perform. I
estimate the relative size of
each event (from very
small to very large). I
assign a time value to each
of the tasks based upon
my historical data for the
type of task and its relative
size. (A medium-sized
meeting, for example, is
typically 60 minutes long.)
Then, I put the tasks in
order and create an earned
value tracking plan for my
day. As I work the tasks, I
record the actual time in
minutes it took me to complete each one.
Every time I do this, I update my actual
earned value and compare it to my plan. I
then adjust my plan throughout the day to
account for unexpected events.

At the end of the day, I conduct a post-
mortem to record my historical data, com-
pare my estimates to my actual times, doc-
ument any lessons learned, and prepare the
tracking form for the next day.

Impressed? Scared, maybe? Wait,
there’s more!

Another symptom of my addiction is
that I have a documented process for
everything. Of course, I have a process for
creating software and for planning and
tracking my day, but I also have a process
for conducting meetings, writing meeting
minutes and documents, updating project
metrics, and all the routine things I do
throughout the week. I even have a process
for balancing my checkbook.

Oh, yes. This addiction extends to my
home life as well. My family has gotten

used to seeing charts on the wall. Weight
loss and family budget charts are the most
common, but I’m currently working on a
weekly earned value chart for household
chores and another to track savings toward
our summer vacation. I have to hide these
charts in the bathroom where most visitors
won’t see them. (PSP addicts are not well
understood by nonbelievers.)

Which brings me to this question: Why
do folks take an instant and extreme dislik-
ing to those three little letters? PSP addicts
often suffer from open hostility. For exam-
ple, people have stormed out of my PSP
classes (Did I mention I’m also an instruc-
tor?), started shouting matches over it, and
have even called me a liar. Last month, a
well-respected software professional called
the PSP practice of tracking to the minute
“#*@%-ing ludicrous!” He then spent
several minutes telling me why it was ludi-
crous and why the use of the expletive was
the kindest possible way to put it.

I think a major reason people dislike it
is that PSP is threatening to their way of
life. Outside of the sports world, people
generally do not like measuring them-
selves. (When was the last time you really
looked at the bathroom scale?) A basic
assumption of PSP is that we must meas-
ure ourselves. Another PSP tenet is that
current methods for producing software
are not only inadequate, they are danger-

ous. This does not sit well with people who
have been working that way for a couple of
decades. PSP is also a direct departure
from the prevalent hack-and-slash culture
and treats the creation of software not as
an art form, but as a discipline.

PSP requires us to be marathon run-
ners, to know the length of the track we’re
running and to use a stopwatch to time

ourselves. Some people
feel that this takes the fun
out of coding. PSP
addicts find the fun in
meeting a schedule and
producing code that com-
piles and tests perfectly
the first time. This attitude
actually scares some peo-
ple.

So, what do we do with
weirdos like me who actu-
ally like PSP? (Oh, yes,
there are others!) Do we
really want to set up a
booth at COMDEX to
collect donations to eradi-
cate this debilitating and
unpleasant disease?

You know, there are
advantages to working
with PSP addicts: They
give you accurate esti-
mates, they let you know

early on if those estimates need adjusting,
they know their strengths, they know their
weaknesses, and they know how to
improve themselves. While it may seem
that the overhead of PSP data collection
will slow you down, PSP has been proven
time and again to actually increase produc-
tivity.

So, rather than find a cure for PSP
addicts, maybe we should send them to
support groups. These groups already exist
and, where properly implemented, are
effective outlets for the PSP addict: Team
Software ProcessSM (TSPSM) groups. These
are teams of PSP addicts who work
together to produce nearly defect-free
code on time and under budget. And just
like other support groups, TSP groups
have weekly meetings. It’s a good thing,
too – finally we have someone to show our
charts to!

–– David R. Webb
Software Division, Hill Air Force Base

PSP Addicts Anonymous

September 2002 www.stsc.hill.af.mil 31

David Webb’s Daily Earned Value Chart

2002 U.S. Government's Top 5 Quality Software Projects
The De accepting

Projects. Outstanding performance of software teams will be recognized
and best practices promoted.

These prestigious awards are sponsored by the Office of the Under
Secretary of Defense for Acquisition Resources and Analysis, and are
aimed at honoring the best of our government software capabilities and
recognizing excellence in software development.

The deadline for the 2002 nominations is December 13, 2002. You can
review the nomination and selection process, scoring criteria, and
nomination criteria by visiting our Web site. Then, using the nomination
form, submit your project for consideration for this prominent award.

Winners will be presented with their award at the 15th annual Software
Technology Conference in Salt Lake City and will be featured in the
July 2003 issue of CrossTalk.

CrossTalk / MASE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Sept2002cover.qxd 8/9/02 3:17 PM Page 2

	Cover
	Index
	From the Publisher
	2002 U.S. Government's Top 5 Quality Software Projects
	AV-8B's Experience Using the TSP to Accelerate SW-CMM Adoption
	Web Sites
	How the TSP Impacts the Top Line
	All the Right Behavior
	Managing a Company Using TSP Techniques
	Coming Events
	SEI CMM Level 5: Lightning Strikes Twice
	A Web Repository of Lessons Learned from COTS-Based Software Development
	TSP: Process Costs and Benefits
	Letter to the Editor
	Experts Present Views on 21st Century
	Using the TSP to Implement the CMM
	From Performance-Based Earned Value to the CMMI
	BackTalk
	Back Cover

